Science and Technology Branch, Environment and Climate Change Canada, Saskatoon, Saskatchewan, Canada.
College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
PLoS One. 2024 Jun 14;19(6):e0304495. doi: 10.1371/journal.pone.0304495. eCollection 2024.
Discerning assimilated diets of wild animals using stable isotopes is well established where potential dietary items in food webs are isotopically distinct. With the advent of mixing models, and Bayesian extensions of such models (Bayesian Stable Isotope Mixing Models, BSIMMs), statistical techniques available for these efforts have been rapidly increasing. The accuracy with which BSIMMs quantify diet, however, depends on several factors including uncertainty in tissue discrimination factors (TDFs; Δ) and identification of appropriate error structures. Whereas performance of BSIMMs has mostly been evaluated with simulations, here we test the efficacy of BSIMMs by raising domestic broiler chicks (Gallus gallus domesticus) on four isotopically distinct diets under controlled environmental conditions, ideal for evaluating factors that affect TDFs and testing how BSIMMs allocate individual birds to diets that vary in isotopic similarity. For both liver and feather tissues, δ13C and δ 15N values differed among dietary groups. Δ13C of liver, but not feather, was negatively related to the rate at which individuals gained body mass. For Δ15N, we identified effects of dietary group, sex, and tissue type, as well as an interaction between sex and tissue type, with females having higher liver Δ15N relative to males. For both tissues, BSIMMs allocated most chicks to correct dietary groups, especially for models using combined TDFs rather than diet-specific TDFs, and those applying a multiplicative error structure. These findings provide new information on how biological processes affect TDFs and confirm that adequately accounting for variability in consumer isotopes is necessary to optimize performance of BSIMMs. Moreover, results demonstrate experimentally that these models reliably characterize consumed diets when appropriately parameterized.
利用稳定同位素来辨别野生动物的混合饮食在食物网中存在潜在的饮食同位素差异的情况下已经得到了很好的建立。随着混合模型的出现,以及这些模型的贝叶斯扩展(贝叶斯稳定同位素混合模型,BSIMMs),这些努力所使用的统计技术迅速增加。然而,BSIMMs 量化饮食的准确性取决于几个因素,包括组织分辨因子(TDFs;Δ)的不确定性和适当误差结构的识别。虽然 BSIMMs 的性能主要是通过模拟来评估的,但在这里,我们通过在受控环境条件下用四种同位素不同的饮食来饲养肉鸡(Gallus gallus domesticus)来测试 BSIMMs 的功效,这非常适合评估影响 TDFs 的因素,并测试 BSIMMs 如何将个体分配到在同位素相似性上存在差异的饮食中。对于肝脏和羽毛组织,δ13C 和 δ15N 值在饮食组之间存在差异。肝脏的 Δ13C,但不是羽毛的 Δ13C,与个体体重增加的速度呈负相关。对于 Δ15N,我们确定了饮食组、性别和组织类型的影响,以及性别和组织类型之间的相互作用,与雄性相比,雌性的肝脏 Δ15N 更高。对于这两种组织,BSIMMs 将大多数小鸡分配到正确的饮食组,尤其是对于使用组合 TDF 而不是特定于饮食的 TDF 的模型,以及那些应用乘法误差结构的模型。这些发现提供了有关生物过程如何影响 TDFs 的新信息,并证实了充分考虑消费者同位素的变异性对于优化 BSIMMs 的性能是必要的。此外,实验结果表明,当适当参数化时,这些模型可以可靠地描述消耗的饮食。