Center for Applied Mathematics, Cornell University, Ithaca, New York, United States of America.
Department of Translational Hematology and Oncology Research, Cleveland Clinic, Cleveland, Ohio, United States of America.
PLoS Comput Biol. 2024 Jun 14;20(6):e1012165. doi: 10.1371/journal.pcbi.1012165. eCollection 2024 Jun.
Although adaptive cancer therapy shows promise in integrating evolutionary dynamics into treatment scheduling, the stochastic nature of cancer evolution has seldom been taken into account. Various sources of random perturbations can impact the evolution of heterogeneous tumors, making performance metrics of any treatment policy random as well. In this paper, we propose an efficient method for selecting optimal adaptive treatment policies under randomly evolving tumor dynamics. The goal is to improve the cumulative "cost" of treatment, a combination of the total amount of drugs used and the total treatment time. As this cost also becomes random in any stochastic setting, we maximize the probability of reaching the treatment goals (tumor stabilization or eradication) without exceeding a pre-specified cost threshold (or a "budget"). We use a novel Stochastic Optimal Control formulation and Dynamic Programming to find such "threshold-aware" optimal treatment policies. Our approach enables an efficient algorithm to compute these policies for a range of threshold values simultaneously. Compared to treatment plans shown to be optimal in a deterministic setting, the new "threshold-aware" policies significantly improve the chances of the therapy succeeding under the budget, which is correlated with a lower general drug usage. We illustrate this method using two specific examples, but our approach is far more general and provides a new tool for optimizing adaptive therapies based on a broad range of stochastic cancer models.
尽管适应性癌症疗法在将进化动力学纳入治疗计划方面显示出了一定的前景,但癌症进化的随机性很少被考虑到。各种随机扰动源会影响异质肿瘤的进化,从而使任何治疗策略的性能指标也变得随机。在本文中,我们提出了一种在随机肿瘤动力学下选择最佳适应性治疗策略的有效方法。目标是提高治疗的累积“成本”,即药物使用总量和总治疗时间的组合。由于在任何随机环境中,成本也是随机的,因此我们最大化达到治疗目标(肿瘤稳定或根除)的概率,而不会超过预定的成本阈值(或“预算”)。我们使用一种新的随机最优控制公式和动态规划来找到这种“阈值感知”的最优治疗策略。我们的方法可以为一系列阈值同时计算这些策略,从而实现一种高效的算法。与在确定性环境下被证明是最优的治疗方案相比,新的“阈值感知”策略显著提高了在预算范围内治疗成功的机会,这与较低的一般药物使用量相关。我们使用两个具体的例子来说明这种方法,但我们的方法更加通用,为基于广泛的随机癌症模型优化适应性治疗提供了一种新的工具。