Suppr超能文献

预测医疗保险优势计划中早期姑息治疗识别的患者死亡率:机器学习模型的特征

Predicting Patient Mortality for Earlier Palliative Care Identification in Medicare Advantage Plans: Features of a Machine Learning Model.

作者信息

Bowers Anne, Drake Chelsea, Makarkin Alexi E, Monzyk Robert, Maity Biswajit, Telle Andrew

机构信息

Evernorth Health, Inc, St. Louis, MO, United States.

出版信息

JMIR AI. 2023 Feb 20;2:e42253. doi: 10.2196/42253.

Abstract

BACKGROUND

Machine learning (ML) can offer greater precision and sensitivity in predicting Medicare patient end of life and potential need for palliative services compared to provider recommendations alone. However, earlier ML research on older community dwelling Medicare beneficiaries has provided insufficient exploration of key model feature impacts and the role of the social determinants of health.

OBJECTIVE

This study describes the development of a binary classification ML model predicting 1-year mortality among Medicare Advantage plan members aged ≥65 years (N=318,774) and further examines the top features of the predictive model.

METHODS

A light gradient-boosted trees model configuration was selected based on 5-fold cross-validation. The model was trained with 80% of cases (n=255,020) using randomized feature generation periods, with 20% (n=63,754) reserved as a holdout for validation. The final algorithm used 907 feature inputs extracted primarily from claims and administrative data capturing patient diagnoses, service utilization, demographics, and census tract-based social determinants index measures.

RESULTS

The total sample had an actual mortality prevalence of 3.9% in the 2018 outcome period. The final model correctly predicted 44.2% of patient expirations among the top 1% of highest risk members (AUC=0.84; 95% CI 0.83-0.85) versus 24.0% predicted by the model iteration using only age, gender, and select high-risk utilization features (AUC=0.74; 95% CI 0.73-0.74). The most important algorithm features included patient demographics, diagnoses, pharmacy utilization, mean costs, and certain social determinants of health.

CONCLUSIONS

The final ML model better predicts Medicare Advantage member end of life using a variety of routinely collected data and supports earlier patient identification for palliative care.

摘要

背景

与仅依据医疗服务提供者的建议相比,机器学习(ML)在预测医疗保险患者的生命终结以及对姑息治疗服务的潜在需求方面,能够提供更高的精度和灵敏度。然而,早期针对居住在社区的老年医疗保险受益人的机器学习研究,对关键模型特征的影响以及健康的社会决定因素的作用,探索尚不充分。

目的

本研究描述了一个二元分类机器学习模型的开发过程,该模型用于预测年龄≥65岁的医疗保险优势计划成员(N = 318,774)的1年死亡率,并进一步研究该预测模型的主要特征。

方法

基于五折交叉验证选择了轻梯度提升树模型配置。使用随机特征生成期,用80%的病例(n = 255,020)对模型进行训练,将20%(n = 63,754)留作验证集。最终算法使用了907个特征输入,这些输入主要从索赔和管理数据中提取,涵盖患者诊断、服务利用情况、人口统计学信息以及基于普查区的社会决定因素指数测量值。

结果

在2018年的观察期内,总样本的实际死亡率为3.9%。最终模型在风险最高的前1%成员中正确预测了44.2%的患者死亡情况(曲线下面积[AUC]=0.84;95%置信区间0.83 - 0.85),而仅使用年龄、性别和选定的高风险利用特征的模型迭代预测的比例为24.0%(AUC = 0.74;95%置信区间0.73 - 0.74)。最重要的算法特征包括患者人口统计学信息、诊断、药房使用情况、平均费用以及某些健康的社会决定因素。

结论

最终的机器学习模型利用各种常规收集的数据,能更好地预测医疗保险优势计划成员的生命终结情况,并支持更早地识别出需要姑息治疗的患者。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/37bf/11041411/20f1c1be692d/ai_v2i1e42253_fig1.jpg

相似文献

2
Can Predictive Modeling Tools Identify Patients at High Risk of Prolonged Opioid Use After ACL Reconstruction?
Clin Orthop Relat Res. 2020 Jul;478(7):0-1618. doi: 10.1097/CORR.0000000000001251.
7
Predicting potential palliative care beneficiaries for health plans: A generalized machine learning pipeline.
J Biomed Inform. 2021 Nov;123:103922. doi: 10.1016/j.jbi.2021.103922. Epub 2021 Oct 2.
9

引用本文的文献

1

本文引用的文献

1
Predicting Sepsis Mortality in a Population-Based National Database: Machine Learning Approach.
J Med Internet Res. 2022 Apr 13;24(4):e29982. doi: 10.2196/29982.
3
Palliative Care Exposure Relative to Predicted Risk of Six-Month Mortality in Hospitalized Adults.
J Pain Symptom Manage. 2022 May;63(5):645-653. doi: 10.1016/j.jpainsymman.2022.01.013. Epub 2022 Jan 23.
4
Epidemiologic Trends, Social Determinants, and Brain Health: The Role of Life Course Inequalities.
Stroke. 2022 Feb;53(2):437-443. doi: 10.1161/STROKEAHA.121.032609. Epub 2022 Jan 10.
5
Predicting potential palliative care beneficiaries for health plans: A generalized machine learning pipeline.
J Biomed Inform. 2021 Nov;123:103922. doi: 10.1016/j.jbi.2021.103922. Epub 2021 Oct 2.
6
Early Palliative Care Is Associated With Reduced Emergency Department Utilization in Pancreatic Cancer.
Am J Clin Oncol. 2021 May 1;44(5):181-186. doi: 10.1097/COC.0000000000000802.
8
Machine Learning Algorithms to Predict Mortality and Allocate Palliative Care for Older Patients With Hip Fracture.
J Am Med Dir Assoc. 2021 Feb;22(2):291-296. doi: 10.1016/j.jamda.2020.09.025. Epub 2020 Oct 29.
9
Identification of patients with potential palliative care needs: A systematic review of screening tools in primary care.
Palliat Med. 2020 Sep;34(8):989-1005. doi: 10.1177/0269216320929552. Epub 2020 Jun 7.
10
NECPAL tool prognostication in advanced chronic illness: a rapid review and expert consensus.
BMJ Support Palliat Care. 2022 May;12(e1):e10-e20. doi: 10.1136/bmjspcare-2019-002126. Epub 2020 Apr 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验