Suppr超能文献

机器学习算法预测死亡率并为老年髋部骨折患者分配姑息治疗。

Machine Learning Algorithms to Predict Mortality and Allocate Palliative Care for Older Patients With Hip Fracture.

机构信息

School of Nursing, Duke University, Durham, NC, USA; Center for the Study of Aging and Human Development, Duke University, Durham, NC, USA.

Department of Computer Science, Duke University, Durham, NC, USA.

出版信息

J Am Med Dir Assoc. 2021 Feb;22(2):291-296. doi: 10.1016/j.jamda.2020.09.025. Epub 2020 Oct 29.

Abstract

OBJECTIVES

To evaluate a machine learning model designed to predict mortality for Medicare beneficiaries aged >65 years treated for hip fracture in Inpatient Rehabilitation Facilities (IRFs).

DESIGN

Retrospective design/cohort analysis of Centers for Medicare & Medicaid Services Inpatient Rehabilitation Facility-Patient Assessment Instrument data.

SETTING AND PARTICIPANTS

A total of 17,140 persons admitted to Medicare-certified IRFs in 2015 following hospitalization for hip fracture.

MEASURES

Patient characteristics include sociodemographic (age, gender, race, and social support) and clinical factors (functional status at admission, chronic conditions) and IRF length of stay. Outcomes were 30-day and 1-year all-cause mortality. We trained and evaluated 2 classification models, logistic regression and a multilayer perceptron (MLP), to predict the probability of 30-day and 1-year mortality and evaluated the calibration, discrimination, and precision of the models.

RESULTS

For 30-day mortality, MLP performed well [acc = 0.74, area under the receiver operating characteristic curve (AUROC) = 0.76, avg prec = 0.10, slope = 1.14] as did logistic regression (acc = 0.78, AUROC = 0.76, avg prec = 0.09, slope = 1.20). For 1-year mortality, the performances were similar for both MLP (acc = 0.68, AUROC = 0.75, avg prec = 0.32, slope = 0.96) and logistic regression (acc = 0.68, AUROC = 0.75, avg prec = 0.32, slope = 0.95).

CONCLUSION AND IMPLICATIONS

A scoring system based on logistic regression may be more feasible to run in current electronic medical records. But MLP models may reduce cognitive burden and increase ability to calibrate to local data, yielding clinical specificity in mortality prediction so that palliative care resources may be allocated more effectively.

摘要

目的

评估一种机器学习模型,用于预测在住院康复机构(IRF)接受髋部骨折治疗的 65 岁以上 Medicare 受益人的死亡率。

设计

对医疗保险和医疗补助服务中心住院康复机构患者评估工具数据进行回顾性设计/队列分析。

设置和参与者

共有 17140 人在 2015 年因髋部骨折住院后入住 Medicare 认证的 IRF。

措施

患者特征包括社会人口统计学(年龄、性别、种族和社会支持)和临床因素(入院时的功能状态、慢性疾病)和 IRF 住院时间。结果是 30 天和 1 年全因死亡率。我们训练和评估了 2 种分类模型,逻辑回归和多层感知器(MLP),以预测 30 天和 1 年死亡率,并评估了模型的校准、区分和精度。

结果

对于 30 天死亡率,MLP 表现良好[准确度(acc)=0.74,接受者操作特征曲线下的面积(AUROC)=0.76,平均精度(avg prec)=0.10,斜率=1.14],逻辑回归也表现良好(acc=0.78,AUROC=0.76,avg prec=0.09,斜率=1.20)。对于 1 年死亡率,MLP(acc=0.68,AUROC=0.75,avg prec=0.32,斜率=0.96)和逻辑回归(acc=0.68,AUROC=0.75,avg prec=0.32,斜率=0.95)的表现相似。

结论和意义

基于逻辑回归的评分系统可能更适合在当前的电子病历中运行。但是,MLP 模型可以减少认知负担并提高校准到本地数据的能力,从而在死亡率预测中产生临床特异性,以便更有效地分配姑息治疗资源。

相似文献

1
Machine Learning Algorithms to Predict Mortality and Allocate Palliative Care for Older Patients With Hip Fracture.
J Am Med Dir Assoc. 2021 Feb;22(2):291-296. doi: 10.1016/j.jamda.2020.09.025. Epub 2020 Oct 29.
3
Self-Care and Mobility Following Postacute Rehabilitation for Older Adults With Hip Fracture: A Multilevel Analysis.
Arch Phys Med Rehabil. 2016 May;97(5):760-71. doi: 10.1016/j.apmr.2016.01.012. Epub 2016 Feb 1.
4
Performance-based outcomes of inpatient rehabilitation facilities treating hip fracture patients in the United States.
Arch Phys Med Rehabil. 2015 May;96(5):790-8. doi: 10.1016/j.apmr.2015.01.003. Epub 2015 Jan 13.
9
Variation in Functional Status After Hip Fracture: Facility and Regional Influence on Mobility and Self-Care.
J Gerontol A Biol Sci Med Sci. 2017 Oct 1;72(10):1376-1382. doi: 10.1093/gerona/glw249.

引用本文的文献

1
A nomogram for one-year risk of death after hip fracture.
Front Med (Lausanne). 2025 May 30;12:1500049. doi: 10.3389/fmed.2025.1500049. eCollection 2025.
2
Development and reporting of artificial intelligence in osteoporosis management.
J Bone Miner Res. 2024 Oct 29;39(11):1553-1573. doi: 10.1093/jbmr/zjae131.
3
Empowering nurses to champion Health equity & BE FAIR: Bias elimination for fair and responsible AI in healthcare.
J Nurs Scholarsh. 2025 Jan;57(1):130-139. doi: 10.1111/jnu.13007. Epub 2024 Jul 29.
6
Development and Internal Validation of a Multivariable Prediction Model for Mortality After Hip Fracture with Machine Learning Techniques.
Calcif Tissue Int. 2024 Jun;114(6):568-582. doi: 10.1007/s00223-024-01208-1. Epub 2024 Apr 16.
8
Systematic review of machine-learning models in orthopaedic trauma.
Bone Jt Open. 2024 Jan 16;5(1):9-19. doi: 10.1302/2633-1462.51.BJO-2023-0095.R1.
9
Predicting Prolonged Wound Drainage after Hemiarthroplasty for Hip Fractures: A Stacked Machine Learning Study.
Clin Orthop Surg. 2023 Dec;15(6):894-901. doi: 10.4055/cios22181. Epub 2023 Oct 20.

本文引用的文献

1
Adversarial Time-to-Event Modeling.
Proc Mach Learn Res. 2018 Jul;80:735-744.
2
Policy Changes Key To Promoting Sustainability And Growth Of The Specialty Palliative Care Workforce.
Health Aff (Millwood). 2019 Jun;38(6):910-918. doi: 10.1377/hlthaff.2019.00018.
3
Dynamic-DeepHit: A Deep Learning Approach for Dynamic Survival Analysis With Competing Risks Based on Longitudinal Data.
IEEE Trans Biomed Eng. 2020 Jan;67(1):122-133. doi: 10.1109/TBME.2019.2909027. Epub 2019 Apr 3.
4
Development and validation of a 5-year mortality prediction model using regularized regression and Medicare data.
Pharmacoepidemiol Drug Saf. 2019 May;28(5):584-592. doi: 10.1002/pds.4769. Epub 2019 Mar 19.
5
Factors predicting one-year mortality of patients over 80 years operated after femoral neck fracture.
Rev Esp Cir Ortop Traumatol (Engl Ed). 2019 May-Jun;63(3):202-208. doi: 10.1016/j.recot.2018.10.007. Epub 2019 Feb 20.
6
Bundled Care for Hip Fractures: A Machine-Learning Approach to an Untenable Patient-Specific Payment Model.
J Orthop Trauma. 2019 Jul;33(7):324-330. doi: 10.1097/BOT.0000000000001454.
7
Artificial intelligence in radiology.
Nat Rev Cancer. 2018 Aug;18(8):500-510. doi: 10.1038/s41568-018-0016-5.
8
Big Data and Machine Learning in Health Care.
JAMA. 2018 Apr 3;319(13):1317-1318. doi: 10.1001/jama.2017.18391.
9
Predicting cancer outcomes from histology and genomics using convolutional networks.
Proc Natl Acad Sci U S A. 2018 Mar 27;115(13):E2970-E2979. doi: 10.1073/pnas.1717139115. Epub 2018 Mar 12.
10
Preventable risk factors of mortality after hip fracture surgery: Systematic review and meta-analysis.
Int J Surg. 2018 Apr;52:320-328. doi: 10.1016/j.ijsu.2018.02.061. Epub 2018 Mar 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验