Suppr超能文献

开发和验证 15 个月死亡率预测模型:对全国医疗保险接受者样本中机器学习技术的回顾性观察比较。

Development and validation of 15-month mortality prediction models: a retrospective observational comparison of machine-learning techniques in a national sample of Medicare recipients.

机构信息

Analytics, AxisPoint Health, Westminster, Colorado, USA.

Medical Affairs, AxisPoint Health, Westminster, Colorado, USA.

出版信息

BMJ Open. 2019 Jul 16;9(7):e022935. doi: 10.1136/bmjopen-2018-022935.

Abstract

OBJECTIVE

The objective is to develop and validate a predictive model for 15-month mortality using a random sample of community-dwelling Medicare beneficiaries.

DATA SOURCE

The Centres for Medicare & Medicaid Services' Limited Data Set files containing the five per cent samples for 2014 and 2015.

PARTICIPANTS

The data analysed contains de-identified administrative claims information at the beneficiary level, including diagnoses, procedures and demographics for 2.7 million beneficiaries.

SETTING

US national sample of Medicare beneficiaries.

STUDY DESIGN

Eleven different models were used to predict 15-month mortality risk: logistic regression (using both stepwise and least absolute shrinkage and selection operator (LASSO) selection of variables as well as models using an age gender baseline, Charlson scores, Charlson conditions, Elixhauser conditions and all variables), naïve Bayes, decision tree with adaptive boosting, neural network and support vector machines (SVMs) validated by simple cross validation. Updated Charlson score weights were generated from the predictive model using only Charlson conditions.

PRIMARY OUTCOME MEASURE

C-statistic.

RESULTS

The c-statistics was 0.696 for the naïve Bayes model and 0.762 for the decision tree model. For models that used the Charlson score or the Charlson variables the c-statistic was 0.713 and 0.726, respectively, similar to the model using Elixhauser conditions of 0.734. The c-statistic for the SVM model was 0.788 while the four models that performed the best were the logistic regression using all variables, logistic regression after selection of variables by the LASSO method, the logistic regression using a stepwise selection of variables and the neural network with c-statistics of 0.798, 0.798, 0.797 and 0.795, respectively.

CONCLUSIONS

Improved means for identifying individuals in the last 15 months of life is needed to improve the patient experience of care and reducing the per capita cost of healthcare. This study developed and validated a predictive model for 15-month mortality with higher generalisability than previous administrative claims-based studies.

摘要

目的

本研究旨在利用社区居住的 Medicare 受益人群的随机样本,建立并验证一个可预测 15 个月死亡率的模型。

数据来源

Centres for Medicare & Medicaid Services 的有限数据集文件,包含 2014 年和 2015 年的 5%抽样数据。

参与者

分析的数据为 270 万受益人的个人匿名行政索赔信息,包括诊断、程序和人口统计学信息。

设定

美国 Medicare 受益人群的全国样本。

研究设计

使用了 11 种不同的模型来预测 15 个月的死亡率风险:逻辑回归(包括逐步法和最小绝对收缩和选择算子(LASSO)变量选择以及使用年龄性别基线、Charlson 评分、Charlson 疾病、Elixhauser 疾病和所有变量的模型)、朴素贝叶斯、自适应增强决策树、神经网络和支持向量机(SVM),并通过简单交叉验证进行验证。仅使用 Charlson 疾病对预测模型进行更新,生成 Charlson 评分权重。

主要观察指标

C 统计量。

结果

朴素贝叶斯模型的 C 统计量为 0.696,决策树模型为 0.762。使用 Charlson 评分或 Charlson 变量的模型的 C 统计量分别为 0.713 和 0.726,与使用 Elixhauser 条件的模型(0.734)相似。SVM 模型的 C 统计量为 0.788,而表现最好的四个模型分别是使用所有变量的逻辑回归、使用 LASSO 方法选择变量的逻辑回归、使用逐步选择变量的逻辑回归和神经网络,C 统计量分别为 0.798、0.798、0.797 和 0.795。

结论

需要更好的方法来识别生命最后 15 个月的个体,以改善患者的护理体验并降低医疗保健的人均成本。本研究建立并验证了一个可预测 15 个月死亡率的模型,其通用性优于以往基于行政索赔的研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c26f/6661632/3cca7db8e83c/bmjopen-2018-022935f01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验