使用消费级可穿戴设备进行情感识别的个性化与通用化方法比较:机器学习研究

A Comparison of Personalized and Generalized Approaches to Emotion Recognition Using Consumer Wearable Devices: Machine Learning Study.

作者信息

Li Joe, Washington Peter

机构信息

Information and Computer Sciences, University of Hawai`i at Mānoa, Honolulu, HI, United States.

出版信息

JMIR AI. 2024 May 10;3:e52171. doi: 10.2196/52171.

Abstract

BACKGROUND

There are a wide range of potential adverse health effects, ranging from headaches to cardiovascular disease, associated with long-term negative emotions and chronic stress. Because many indicators of stress are imperceptible to observers, the early detection of stress remains a pressing medical need, as it can enable early intervention. Physiological signals offer a noninvasive method for monitoring affective states and are recorded by a growing number of commercially available wearables.

OBJECTIVE

We aim to study the differences between personalized and generalized machine learning models for 3-class emotion classification (neutral, stress, and amusement) using wearable biosignal data.

METHODS

We developed a neural network for the 3-class emotion classification problem using data from the Wearable Stress and Affect Detection (WESAD) data set, a multimodal data set with physiological signals from 15 participants. We compared the results between a participant-exclusive generalized, a participant-inclusive generalized, and a personalized deep learning model.

RESULTS

For the 3-class classification problem, our personalized model achieved an average accuracy of 95.06% and an F-score of 91.71%; our participant-inclusive generalized model achieved an average accuracy of 66.95% and an F-score of 42.50%; and our participant-exclusive generalized model achieved an average accuracy of 67.65% and an F-score of 43.05%.

CONCLUSIONS

Our results emphasize the need for increased research in personalized emotion recognition models given that they outperform generalized models in certain contexts. We also demonstrate that personalized machine learning models for emotion classification are viable and can achieve high performance.

摘要

背景

长期的负面情绪和慢性压力会带来广泛的潜在健康不良影响,从头痛到心血管疾病不等。由于许多压力指标观察者难以察觉,压力的早期检测仍然是一项紧迫的医疗需求,因为它能够实现早期干预。生理信号提供了一种监测情感状态的非侵入性方法,并且越来越多的商用可穿戴设备可以记录这些信号。

目的

我们旨在研究使用可穿戴生物信号数据的个性化和通用机器学习模型在三类情感分类(中性、压力和娱乐)方面的差异。

方法

我们使用来自可穿戴压力与情感检测(WESAD)数据集的数据开发了一个用于三类情感分类问题的神经网络,该数据集是一个包含15名参与者生理信号的多模态数据集。我们比较了参与者专属通用模型、参与者包含通用模型和个性化深度学习模型的结果。

结果

对于三类分类问题,我们的个性化模型平均准确率达到95.06%,F值为91.71%;我们的参与者包含通用模型平均准确率为66.95%,F值为42.50%;我们的参与者专属通用模型平均准确率为67.65%,F值为43.05%。

结论

我们的结果强调了在个性化情感识别模型方面加大研究力度非常必要,因为在某些情况下它们优于通用模型。我们还证明了用于情感分类的个性化机器学习模型是可行的,并且可以实现高性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80fe/11127131/67ab9ff6fa73/ai_v3i1e52171_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索