Suppr超能文献

在添加差分隐私的联邦学习设置中使用多任务学习进行情感识别时隐私与效用之间的平衡:定量研究

Balancing Between Privacy and Utility for Affect Recognition Using Multitask Learning in Differential Privacy-Added Federated Learning Settings: Quantitative Study.

作者信息

Benouis Mohamed, Andre Elisabeth, Can Yekta Said

机构信息

Faculty of Applied Computer Science, Augsburg University, Augsburg, Germany.

出版信息

JMIR Ment Health. 2024 Dec 23;11:e60003. doi: 10.2196/60003.

Abstract

BACKGROUND

The rise of wearable sensors marks a significant development in the era of affective computing. Their popularity is continuously increasing, and they have the potential to improve our understanding of human stress. A fundamental aspect within this domain is the ability to recognize perceived stress through these unobtrusive devices.

OBJECTIVE

This study aims to enhance the performance of emotion recognition using multitask learning (MTL), a technique extensively explored across various machine learning tasks, including affective computing. By leveraging the shared information among related tasks, we seek to augment the accuracy of emotion recognition while confronting the privacy threats inherent in the physiological data captured by these sensors.

METHODS

To address the privacy concerns associated with the sensitive data collected by wearable sensors, we proposed a novel framework that integrates differential privacy and federated learning approaches with MTL. This framework was designed to efficiently identify mental stress while preserving private identity information. Through this approach, we aimed to enhance the performance of emotion recognition tasks while preserving user privacy.

RESULTS

Comprehensive evaluations of our framework were conducted using 2 prominent public datasets. The results demonstrate a significant improvement in emotion recognition accuracy, achieving a rate of 90%. Furthermore, our approach effectively mitigates privacy risks, as evidenced by limiting reidentification accuracies to 47%.

CONCLUSIONS

This study presents a promising approach to advancing emotion recognition capabilities while addressing privacy concerns in the context of empathetic sensors. By integrating MTL with differential privacy and federated learning, we have demonstrated the potential to achieve high levels of accuracy in emotion recognition while ensuring the protection of user privacy. This research contributes to the ongoing efforts to use affective computing in a privacy-aware and ethical manner.

摘要

背景

可穿戴传感器的兴起标志着情感计算时代的一项重大发展。它们的受欢迎程度不断提高,并且有潜力增进我们对人类压力的理解。该领域的一个基本方面是通过这些不引人注目的设备识别感知到的压力的能力。

目的

本研究旨在使用多任务学习(MTL)提高情感识别性能,多任务学习是一种在包括情感计算在内的各种机器学习任务中广泛探索的技术。通过利用相关任务之间的共享信息,我们试图在应对这些传感器捕获的生理数据中固有的隐私威胁的同时,提高情感识别的准确性。

方法

为了解决与可穿戴传感器收集的敏感数据相关的隐私问题,我们提出了一个新颖的框架,该框架将差分隐私和联邦学习方法与多任务学习相结合。该框架旨在在保护个人身份信息的同时有效地识别精神压力。通过这种方法,我们旨在在保护用户隐私的同时提高情感识别任务的性能。

结果

使用2个著名的公共数据集对我们的框架进行了全面评估。结果表明情感识别准确率有显著提高,达到了90%。此外,我们的方法有效地降低了隐私风险,将重新识别准确率限制在47%就证明了这一点。

结论

本研究提出了一种有前景的方法,可在解决移情传感器背景下的隐私问题的同时提高情感识别能力。通过将多任务学习与差分隐私和联邦学习相结合,我们展示了在确保保护用户隐私的同时在情感识别中实现高精度的潜力。这项研究有助于以注重隐私和符合道德的方式使用情感计算的持续努力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0d5/11684349/1b4644121c29/mental-v11-e60003-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验