Li Shizhe, Fan Chunzhi, Kargarandehkordi Ali, Sun Yinan, Slade Christopher, Jaiswal Aditi, Benzo Roberto M, Phillips Kristina T, Washington Peter
Department of Statistics, Stanford University, Stanford, CA 94305, USA.
Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA 94305, USA.
AI (Basel). 2024 Dec;5(4):2725-2738. doi: 10.3390/ai5040131. Epub 2024 Dec 3.
Substance use disorders affect 17.3% of Americans. Digital health solutions that use machine learning to detect substance use from wearable biosignal data can eventually pave the way for real-time digital interventions. However, difficulties in addressing severe between-subject data heterogeneity have hampered the adaptation of machine learning approaches for substance use detection, necessitating more robust technological solutions. We tested the utility of personalized machine learning using participant-specific convolutional neural networks (CNNs) enhanced with self-supervised learning (SSL) to detect drug use. In a pilot feasibility study, we collected data from 9 participants using Fitbit Charge 5 devices, supplemented by ecological momentary assessments to collect real-time labels of substance use. We implemented a baseline 1D-CNN model with traditional supervised learning and an experimental SSL-enhanced model to improve individualized feature extraction under limited label conditions. Results: Among the 9 participants, we achieved an average area under the receiver operating characteristic curve score across participants of 0.695 for the supervised CNNs and 0.729 for the SSL models. Strategic selection of an optimal threshold enabled us to optimize either sensitivity or specificity while maintaining reasonable performance for the other metric. Conclusion: These findings suggest that Fitbit data have the potential to enhance substance use monitoring systems. However, the small sample size in this study limits its generalizability to diverse populations, so we call for future research that explores SSL-powered personalization at a larger scale.
物质使用障碍影响着17.3%的美国人。利用机器学习从可穿戴生物信号数据中检测物质使用情况的数字健康解决方案最终可为实时数字干预铺平道路。然而,解决受试者间严重的数据异质性方面的困难阻碍了机器学习方法在物质使用检测中的应用,因此需要更强大的技术解决方案。我们测试了使用个性化机器学习的效用,该方法采用通过自监督学习(SSL)增强的参与者特定卷积神经网络(CNN)来检测药物使用情况。在一项试点可行性研究中,我们使用Fitbit Charge 5设备从9名参与者那里收集数据,并辅以生态瞬时评估以收集物质使用的实时标签。我们实施了一个采用传统监督学习的基线一维CNN模型和一个实验性的SSL增强模型,以在有限标签条件下改善个性化特征提取。结果:在这9名参与者中,监督式CNN模型在所有参与者中的平均受试者工作特征曲线下面积得分是0.695,SSL模型为0.729。通过策略性地选择最佳阈值,我们能够在保持另一指标合理性能的同时优化敏感性或特异性。结论:这些发现表明Fitbit数据有潜力增强物质使用监测系统。然而,本研究中的小样本量限制了其对不同人群的普遍性,因此我们呼吁未来开展更大规模探索由SSL驱动的个性化的研究。