Suppr超能文献

Flimma:一种用于差异基因表达分析的联邦和隐私感知工具。

Flimma: a federated and privacy-aware tool for differential gene expression analysis.

机构信息

Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Freising, Germany.

Institute for Computational Systems Biology, University of Hamburg, Hamburg, Germany.

出版信息

Genome Biol. 2021 Dec 14;22(1):338. doi: 10.1186/s13059-021-02553-2.

Abstract

Aggregating transcriptomics data across hospitals can increase sensitivity and robustness of differential expression analyses, yielding deeper clinical insights. As data exchange is often restricted by privacy legislation, meta-analyses are frequently employed to pool local results. However, the accuracy might drop if class labels are inhomogeneously distributed among cohorts. Flimma ( https://exbio.wzw.tum.de/flimma/ ) addresses this issue by implementing the state-of-the-art workflow limma voom in a federated manner, i.e., patient data never leaves its source site. Flimma results are identical to those generated by limma voom on aggregated datasets even in imbalanced scenarios where meta-analysis approaches fail.

摘要

跨医院汇总转录组学数据可以提高差异表达分析的灵敏度和稳健性,从而获得更深入的临床见解。由于数据交换通常受到隐私法规的限制,因此经常采用荟萃分析来汇总局部结果。但是,如果类标签在队列之间不均匀分布,则准确性可能会下降。Flimma(https://exbio.wzw.tum.de/flimma/)通过以联邦方式实现最先进的 limma voom 工作流程来解决此问题,即患者数据从未离开其源站点。即使在荟萃分析方法失败的不平衡情况下,Flimma 的结果与在汇总数据上生成的 limma voom 结果完全相同。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b247/8670124/26bd61433a63/13059_2021_2553_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验