Suppr超能文献

多方同态加密实现精准医学真正隐私保护的联邦分析。

Truly privacy-preserving federated analytics for precision medicine with multiparty homomorphic encryption.

机构信息

Laboratory for Data Security, EPFL, Lausanne, Switzerland.

Precision Medicine Unit, Lausanne University Hospital, Lausanne, Switzerland.

出版信息

Nat Commun. 2021 Oct 11;12(1):5910. doi: 10.1038/s41467-021-25972-y.

Abstract

Using real-world evidence in biomedical research, an indispensable complement to clinical trials, requires access to large quantities of patient data that are typically held separately by multiple healthcare institutions. We propose FAMHE, a novel federated analytics system that, based on multiparty homomorphic encryption (MHE), enables privacy-preserving analyses of distributed datasets by yielding highly accurate results without revealing any intermediate data. We demonstrate the applicability of FAMHE to essential biomedical analysis tasks, including Kaplan-Meier survival analysis in oncology and genome-wide association studies in medical genetics. Using our system, we accurately and efficiently reproduce two published centralized studies in a federated setting, enabling biomedical insights that are not possible from individual institutions alone. Our work represents a necessary key step towards overcoming the privacy hurdle in enabling multi-centric scientific collaborations.

摘要

利用真实世界的证据进行生物医学研究,这是临床试验不可或缺的补充,需要访问大量通常由多个医疗机构单独持有的患者数据。我们提出了 FAMHE,这是一种新颖的联邦分析系统,基于多方同态加密 (MHE),能够在不泄露任何中间数据的情况下,通过生成高度准确的结果,对分布式数据集进行隐私保护分析。我们证明了 FAMHE 适用于重要的生物医学分析任务,包括肿瘤学中的 Kaplan-Meier 生存分析和医学遗传学中的全基因组关联研究。使用我们的系统,我们在联邦环境中准确高效地再现了两个已发表的集中研究,从而能够从单个机构无法获得的生物医学见解。我们的工作代表了克服多中心科学合作中隐私障碍的必要关键步骤。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2848/8505638/e633754abfc5/41467_2021_25972_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验