Suppr超能文献

液体凝聚物的反应驱动扩散泳:细胞内组织的潜在机制

Reaction-Driven Diffusiophoresis of Liquid Condensates: Potential Mechanisms for Intracellular Organization.

作者信息

Häfner Gregor, Müller Marcus

机构信息

Georg-August Universität Göttingen, Institut für Theoretische Physik, Friedrich-Hund Platz 1, 37077 Göttingen, Germany.

Max Planck School Matter to Life, Jahnstraße 29, 69120 Heidelberg, Germany.

出版信息

ACS Nano. 2024 Jul 2;18(26):16530-16544. doi: 10.1021/acsnano.3c12842. Epub 2024 Jun 14.

Abstract

The cellular environment, characterized by its intricate composition and spatial organization, hosts a variety of organelles, ranging from membrane-bound ones to membraneless structures that are formed through liquid-liquid phase separation. Cells show precise control over the position of such condensates. We demonstrate that organelle movement in external concentration gradients, , is distinct from the one of colloids because fluxes can remain finite inside the liquid-phase droplets and movement of the latter arises from incompressibility. Within cellular domains diffusiophoresis naturally arises from biochemical reactions that are driven by a chemical fuel and produce waste. Simulations and analytical arguments within a minimal model of reaction-driven phase separation reveal that the directed movement stems from two contributions: Fuel and waste are refilled or extracted at the boundary, resulting in concentration gradients, which (i) induce product fluxes via incompressibility and (ii) result in an asymmetric forward reaction in the droplet's surroundings (as well as asymmetric backward reaction inside the droplet), thereby shifting the droplet's position. We show that the former contribution dominates and sets the direction of the movement, toward or away from fuel source and waste sink, depending on the product molecules' affinity toward fuel and waste, respectively. The mechanism thus provides a simple means to organize condensates with different composition. Particle-based simulations and systems with more complex reaction cycles corroborate the robustness and universality of this mechanism.

摘要

细胞环境以其复杂的组成和空间组织为特征,容纳了各种各样的细胞器,从膜结合的细胞器到通过液-液相分离形成的无膜结构。细胞对这些凝聚物的位置表现出精确的控制。我们证明,细胞器在外部浓度梯度中的运动与胶体的运动不同,因为在液相液滴内部通量可以保持有限,并且后者的运动源于不可压缩性。在细胞区域内,扩散泳动自然地源于由化学燃料驱动并产生废物的生化反应。在反应驱动的相分离的最小模型内的模拟和分析论证表明,定向运动源于两种作用:燃料和废物在边界处被重新填充或提取,从而产生浓度梯度,这(i)通过不可压缩性诱导产物通量,并且(ii)在液滴周围导致不对称的正向反应(以及液滴内部的不对称反向反应),从而改变液滴的位置。我们表明,前一种作用占主导并设定运动方向,朝向或远离燃料源和废物汇,这分别取决于产物分子对燃料和废物的亲和力。因此,该机制提供了一种简单的方法来组织具有不同组成的凝聚物。基于粒子的模拟以及具有更复杂反应循环的系统证实了该机制的稳健性和普遍性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/58ad/11223496/7b0ebbf6df8d/nn3c12842_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验