Thewes Filipe C, Krüger Matthias, Sollich Peter
Institut für Theoretische Physik, Georg-August-Universität Göttingen, 37077 Göttingen, Germany.
King's College London, Department of Mathematics, Strand, London WC2R 2LS, United Kingdom.
Phys Rev Lett. 2023 Aug 4;131(5):058401. doi: 10.1103/PhysRevLett.131.058401.
Understanding the phase behavior of mixtures with many components is important in many contexts, including as a key step toward a physics-based description of intracellular compartmentalization. Here, we study phase ordering instabilities in a paradigmatic model that represents the complexity of-e.g., biological-mixtures via random second virial coefficients. Using tools from free probability theory we obtain the exact spinodal curve and the nature of instabilities for a mixture with an arbitrary composition, thus lifting an important restriction in previous work. We show that, by controlling the concentration of only a few components, one can systematically change the nature of the spinodal instability and achieve demixing for realistic scenarios by a strong composition imbalance amplification. This results from a nontrivial interplay of interaction complexity and entropic effects due to the nonuniform composition. Our approach can be extended to include additional systematic interactions, leading to a competition between different forms of demixing as density is varied.
理解多组分混合物的相行为在许多情况下都很重要,包括作为基于物理学描述细胞内区室化的关键步骤。在这里,我们研究了一个典型模型中的相序不稳定性,该模型通过随机第二维里系数来表示例如生物混合物的复杂性。使用自由概率论的工具,我们得到了任意组成混合物的精确旋节线曲线和不稳定性的性质,从而消除了先前工作中的一个重要限制。我们表明,通过仅控制少数组分的浓度,人们可以系统地改变旋节线不稳定性的性质,并通过强烈的组成不平衡放大在现实场景中实现相分离。这是由于组成不均匀导致的相互作用复杂性和熵效应之间的非平凡相互作用所致。我们的方法可以扩展到包括额外的系统相互作用,从而导致随着密度变化不同形式的相分离之间的竞争。