Suppr超能文献

共济失调毛细血管扩张症患者来源的神经元和脑类器官模型揭示了线粒体功能障碍和氧化应激。

Ataxia Telangiectasia patient-derived neuronal and brain organoid models reveal mitochondrial dysfunction and oxidative stress.

机构信息

The University of Queensland, Australian Institute for Bioengineering & Nanotechnology (AIBN), St. Lucia, Brisbane, QLD 4072, Australia.

The University of Queensland, Australian Institute for Bioengineering & Nanotechnology (AIBN), St. Lucia, Brisbane, QLD 4072, Australia.

出版信息

Neurobiol Dis. 2024 Sep;199:106562. doi: 10.1016/j.nbd.2024.106562. Epub 2024 Jun 13.

Abstract

Ataxia Telangiectasia (AT) is a rare disorder caused by mutations in the ATM gene and results in progressive neurodegeneration for reasons that remain poorly understood. In addition to its central role in nuclear DNA repair, ATM operates outside the nucleus to regulate metabolism, redox homeostasis and mitochondrial function. However, a systematic investigation into how and when loss of ATM affects these parameters in relevant human neuronal models of AT was lacking. We therefore used cortical neurons and brain organoids from AT-patient iPSC and gene corrected isogenic controls to reveal levels of mitochondrial dysfunction, oxidative stress, and senescence that vary with developmental maturity. Transcriptome analyses identified disruptions in regulatory networks related to mitochondrial function and maintenance, including alterations in the PARP/SIRT signalling axis and dysregulation of key mitophagy and mitochondrial fission-fusion processes. We further show that antioxidants reduce ROS and restore neurite branching in AT neuronal cultures, and ameliorate impaired neuronal activity in AT brain organoids. We conclude that progressive mitochondrial dysfunction and aberrant ROS production are important contributors to neurodegeneration in AT and are strongly linked to ATM's role in mitochondrial homeostasis regulation.

摘要

毛细血管扩张性共济失调症(AT)是一种罕见的疾病,由 ATM 基因的突变引起,其原因尚不完全清楚,但会导致进行性神经退行性变。除了在核 DNA 修复中的核心作用外,ATM 还在核外发挥作用,以调节代谢、氧化还原平衡和线粒体功能。然而,对于 ATM 缺失如何以及何时影响相关 AT 人类神经元模型中的这些参数,缺乏系统的研究。因此,我们使用来自 AT 患者 iPSC 和基因校正同基因对照的皮质神经元和脑类器官,揭示了随发育成熟而变化的线粒体功能障碍、氧化应激和衰老水平。转录组分析确定了与线粒体功能和维持相关的调节网络的破坏,包括 PARP/SIRT 信号轴的改变以及关键的线粒体自噬和线粒体分裂-融合过程的失调。我们进一步表明,抗氧化剂可减少 ROS 并恢复 AT 神经元培养物中的神经突分支,改善 AT 脑类器官中受损的神经元活动。我们得出的结论是,进行性线粒体功能障碍和异常的 ROS 产生是 AT 神经退行性变的重要原因,并且与 ATM 在调节线粒体动态平衡中的作用密切相关。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验