Suppr超能文献

使用还原氧化石墨烯(RGO)/半导体纳米复合材料提高光催化活性:问题与未来展望

Boosting Photocatalytic Activity Using Reduced Graphene Oxide (RGO)/Semiconductor Nanocomposites: Issues and Future Scope.

作者信息

Mondal Arindam, Prabhakaran Aarya, Gupta Satyajit, Subramanian Vaidyanathan Ravi

机构信息

Department of Chemistry, IIT Bhilai, Raipur, Chhattisgarh, 492015, India.

Chemical and Materials Engineering Department, University of Nevada, Reno, Reno, Nevada 89557, United States.

出版信息

ACS Omega. 2021 Mar 26;6(13):8734-8743. doi: 10.1021/acsomega.0c06045. eCollection 2021 Apr 6.

Abstract

Semiconductor nanoparticles are promising materials for light-driven processes such as , , and . Effective application of these materials alongside light can assist in reducing the dependence on fossil-fuel driven processes and aid in resolving critical environmental issues. However, severe recombination of the photogenerated charge-carriers is a persistent bottleneck in several semiconductors, particularly those that contain multiple cations. This issue typically manifests in the form of reduced lifetime of the photoexcited electrons-holes leading to a decrease in the quantum efficiency of various light-driven applications. On the other hand, semiconducting oxides or sulfides, coupled with reduced graphene oxide (RGO), have drawn a considerable interest recently, partly because of the RGO enhancing charge separation and transportation through its honeycomb sp network structure. High electron mobility, conductivity, surface area, and cost-effectiveness are the hallmark of the RGO. This Mini-Review focuses on (1) examining the approach to the integration of RGO with semiconductors to produce binary nanocomposites; (2) insights into the microstructure interface, which plays a critical role in leveraging charge transport; (3) key examples of RGO composites with oxide and sulfide semiconductors with photocatalysis as application; and (4) strategies that have to be pursued to fully leverage the benefit of RGO in RGO/semiconductors to attain high photocatalytic activity for a sustainable future. This Mini-Review focuses on areas requiring additional exploration to fully understand the interfacial science of RGO and semiconductor, for clarity regarding the interfacial stability between RGO and the semiconductor, electronic coupling at the heterojunction, and morphological properties of the nanocomposites. We believe that this Mini-Review will assist with streamlining new directions toward the fabrication of RGO/semiconductor nanocomposites with higher photocatalytic activity for solar-driven multifunctional applications.

摘要

半导体纳米颗粒是用于光驱动过程(如[此处原文缺失相关具体过程内容]、[此处原文缺失相关具体过程内容]和[此处原文缺失相关具体过程内容])的有前景的材料。这些材料与光的有效结合有助于减少对化石燃料驱动过程的依赖,并有助于解决关键的环境问题。然而,光生电荷载流子的严重复合是几种半导体中持续存在的瓶颈,特别是那些含有多种阳离子的半导体。这个问题通常表现为光激发电子 - 空穴寿命缩短,导致各种光驱动应用的量子效率降低。另一方面,半导体氧化物或硫化物与还原氧化石墨烯(RGO)结合,最近引起了相当大的关注,部分原因是RGO通过其蜂窝状sp网络结构增强了电荷分离和传输。高电子迁移率、导电性、表面积和成本效益是RGO的特点。本综述聚焦于:(1)研究RGO与半导体整合以制备二元纳米复合材料的方法;(2)深入了解在利用电荷传输中起关键作用的微观结构界面;(3)以光催化为应用的RGO与氧化物和硫化物半导体复合材料的关键实例;(4)为了在RGO/半导体中充分利用RGO的优势以实现高光催化活性从而迈向可持续未来而必须采取的策略。本综述聚焦于需要进一步探索的领域,以全面理解RGO与半导体的界面科学,明确RGO与半导体之间的界面稳定性、异质结处的电子耦合以及纳米复合材料的形态特性。我们相信本综述将有助于简化新的方向,以制备具有更高光催化活性的RGO/半导体纳米复合材料用于太阳能驱动的多功能应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f9a/8028001/fd94eab6285a/ao0c06045_0004.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验