Department of Biomedical Engineering, Duke University, Durham, NC, USA.
Department of Neurobiology, Duke University, Durham, NC, USA.
Nat Methods. 2024 Jul;21(7):1288-1297. doi: 10.1038/s41592-024-02292-9. Epub 2024 Jun 14.
Precision pharmacology aims to manipulate specific cellular interactions within complex tissues. In this pursuit, we introduce DART.2 (drug acutely restricted by tethering), a second-generation cell-specific pharmacology technology. The core advance is optimized cellular specificity-up to 3,000-fold in 15 min-enabling the targeted delivery of even epileptogenic drugs without off-target effects. Additionally, we introduce brain-wide dosing methods as an alternative to local cannulation and tracer reagents for brain-wide dose quantification. We describe four pharmaceuticals-two that antagonize excitatory and inhibitory postsynaptic receptors, and two that allosterically potentiate these receptors. Their versatility is showcased across multiple mouse-brain regions, including cerebellum, striatum, visual cortex and retina. Finally, in the ventral tegmental area, we find that blocking inhibitory inputs to dopamine neurons accelerates locomotion, contrasting with previous optogenetic and pharmacological findings. Beyond enabling the bidirectional perturbation of chemical synapses, these reagents offer intersectional precision-between genetically defined postsynaptic cells and neurotransmitter-defined presynaptic partners.
精准药理学旨在操纵复杂组织内的特定细胞相互作用。在这一追求中,我们引入了 DART.2(药物通过束缚被急性限制),这是一种第二代细胞特异性药理学技术。核心进展是优化细胞特异性——在 15 分钟内高达 3000 倍——从而能够靶向递送甚至致痫药物而不会产生脱靶效应。此外,我们引入了全脑给药方法,作为局部插管和示踪剂试剂的替代方法,用于全脑剂量定量。我们描述了四种药物——两种拮抗兴奋性和抑制性突触后受体的药物,以及两种变构增强这些受体的药物。它们的多功能性在多个小鼠脑区得到了展示,包括小脑、纹状体、视觉皮层和视网膜。最后,在腹侧被盖区,我们发现阻断多巴胺神经元的抑制性输入会加速运动,与之前的光遗传学和药理学发现形成对比。除了能够双向干扰化学突触外,这些试剂还提供了基因定义的突触后细胞和神经递质定义的突触前伙伴之间的交叉精确性。