Suppr超能文献

数据驱动的心脏康复协作质量改进(QUICR)以提高项目完成率:一项集群随机对照试验的方案。

Data-driven collaborative QUality improvement in Cardiac Rehabilitation (QUICR) to increase program completion: protocol for a cluster randomized controlled trial.

机构信息

Faculty of Medicine and Health, Susan Wakil School of Nursing and Midwifery, The University of Sydney, Sydney, NSW, Australia.

Faculty of Medicine and Health, School of Health Sciences, The University of Sydney, Sydney, NSW, Australia.

出版信息

BMC Cardiovasc Disord. 2024 Jun 14;24(1):302. doi: 10.1186/s12872-024-03971-3.

Abstract

BACKGROUND

Coronary heart disease (CHD) is the leading cause of deaths and disability worldwide. Cardiac rehabilitation (CR) effectively reduces the risk of future cardiac events and is strongly recommended in international clinical guidelines. However, CR program quality is highly variable with divergent data systems, which, when combined, potentially contribute to persistently low completion rates. The QUality Improvement in Cardiac Rehabilitation (QUICR) trial aims to determine whether a data-driven collaborative quality improvement intervention delivered at the program level over 12 months: (1) increases CR program completion in eligible patients with CHD (primary outcome), (2) reduces hospital admissions, emergency department presentations and deaths, and costs, (3) improves the proportion of patients receiving guideline-indicated CR according to national and international benchmarks, and (4) is feasible and sustainable for CR staff to implement routinely.

METHODS

QUICR is a multi-centre, type-2, hybrid effectiveness-implementation cluster-randomized controlled trial (cRCT) with 12-month follow-up. Eligible CR programs (n = 40) and the individual patient data within them (n ~ 2,000) recruited from two Australian states (New South Wales and Victoria) are randomized 1:1 to the intervention (collaborative quality improvement intervention that uses data to identify and manage gaps in care) or control (usual care with data collection only). This sample size is required to achieve 80% power to detect a difference in completion rate of 22%. Outcomes will be assessed using intention-to-treat principles. Mixed-effects linear and logistic regression models accounting for clusters within allocated groupings will be applied to analyse primary and secondary outcomes.

DISCUSSION

Addressing poor participation in CR by patients with CHD has been a longstanding challenge that needs innovative strategies to change the status-quo. This trial will harness the collaborative power of CR programs working simultaneously on common problem areas and using local data to drive performance. The use of data linkage for collection of outcomes offers an efficient way to evaluate this intervention and support the improvement of health service delivery.

ETHICS

Primary ethical approval was obtained from the Northern Sydney Local Health District Human Research Ethics Committee (2023/ETH01093), along with site-specific governance approvals.

TRIAL REGISTRATION

Australian New Zealand Clinical Trials Registry (ANZCTR) ACTRN12623001239651 (30/11/2023) ( https://anzctr.org.au/Trial/Registration/TrialReview.aspx?id=386540&isReview=true ).

摘要

背景

冠心病(CHD)是全球死亡和残疾的主要原因。心脏康复(CR)可有效降低未来心脏事件的风险,在国际临床指南中强烈推荐。然而,CR 计划的质量差异很大,数据系统也各不相同,这两者结合起来可能导致持续的低完成率。QUality Improvement in Cardiac Rehabilitation(QUICR)试验旨在确定在 12 个月的时间内,以计划为基础的、数据驱动的协作质量改进干预措施是否会:(1)增加符合条件的 CHD 患者的 CR 计划完成率(主要结果);(2)降低住院率、急诊科就诊率和死亡率以及成本;(3)根据国家和国际基准,提高接受指南建议的 CR 的患者比例;(4)对于 CR 工作人员来说,实施常规工作是可行和可持续的。

方法

QUICR 是一项多中心、2 型、混合有效性-实施的集群随机对照试验(cRCT),随访时间为 12 个月。从澳大利亚两个州(新南威尔士州和维多利亚州)招募了 40 个符合条件的 CR 计划(n=40)及其内部的个体患者数据(n~2000),并将其随机分为 1:1 干预组(协作质量改进干预措施,使用数据识别和管理护理中的差距)或对照组(仅收集数据的常规护理)。需要这种样本量才能达到 80%的功效,以检测完成率差异 22%。将使用意向治疗原则评估结果。将应用混合效应线性和逻辑回归模型,根据分配组内的聚类分析主要和次要结果。

讨论

通过创新战略来改变现状,解决 CHD 患者对 CR 参与度低的问题,这是一个长期存在的挑战。该试验将利用 CR 计划的协作力量,同时解决共同的问题领域,并使用本地数据来推动绩效。使用数据链接收集结果提供了一种有效的方法来评估这种干预措施,并支持改善医疗服务的提供。

伦理

已从北部悉尼地方卫生区人体研究伦理委员会(2023/ETH01093)获得主要伦理批准,以及特定地点的治理批准。

试验注册

澳大利亚新西兰临床试验注册中心(ANZCTR)ACTRN12623001239651(2023 年 11 月 30 日)(https://anzctr.org.au/Trial/Registration/TrialReview.aspx?id=386540&isReview=true)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/950a/11177531/8a4fbe1ad8c2/12872_2024_3971_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验