Tian Peng, Riser Roman, Kanzieper Eugene
School of Mathematical Sciences, Holon Institute of Technology, Holon 5810201, Israel.
Department of Physics and Research Center for Theoretical Physics and Astrophysics, University of Haifa, Haifa 3498838, Israel.
Phys Rev Lett. 2024 May 31;132(22):220401. doi: 10.1103/PhysRevLett.132.220401.
We introduce a notion of local level spacings and study their statistics within a random-matrix-theory approach. In the limit of infinite-dimensional random matrices, we determine universal sequences of mean local spacings and of their ratios which uniquely identify the global symmetries of a quantum system and its internal-chaotic or regular-dynamics. These findings, which offer a new framework to monitor single- and many-body quantum systems, are corroborated by numerical experiments performed for zeros of the Riemann zeta function, spectra of irrational rectangular billiards, and many-body spectra of the Sachdev-Ye-Kitaev Hamiltonians.
我们引入了局部能级间距的概念,并在随机矩阵理论方法中研究它们的统计特性。在无限维随机矩阵的极限情况下,我们确定了平均局部间距及其比率的通用序列,这些序列唯一地确定了量子系统的全局对称性及其内部混沌或规则动力学。这些发现为监测单粒子和多粒子量子系统提供了一个新框架,对黎曼ζ函数的零点、无理矩形台球的谱以及萨赫德夫-叶-基塔耶夫哈密顿量的多体谱进行的数值实验证实了这些发现。