Maffi Lorenzo, Tausendpfund Niklas, Rizzi Matteo, Burrello Michele
Center for Quantum Devices and Niels Bohr International Academy, Niels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen, Denmark.
Dipartimento di Fisica e Astronomia "G. Galilei," Università degli Studi di Padova, I-35131 Padova, Italy.
Phys Rev Lett. 2024 May 31;132(22):226502. doi: 10.1103/PhysRevLett.132.226502.
Modern hybrid superconductor-semiconductor Josephson junction arrays are a promising platform for analog quantum simulations. Their controllable and nonsinusoidal energy-phase relation opens the path to implement nontrivial interactions and study the emergence of exotic quantum phase transitions. Here, we propose the analysis of an array of hybrid Josephson junctions defining a two-leg ladder geometry for the quantum simulation of the tricritical Ising phase transition. This transition provides the paradigmatic example of minimal conformal models beyond Ising criticality and its excitations are intimately related to Fibonacci non-Abelian anyons and topological order in two dimensions. We study this superconducting system and its thermodynamic phases based on bosonization and matrix-product-state techniques. Its effective continuous description in terms of a three-frequency sine-Gordon quantum field theory suggests the presence of the targeted tricritical point and the numerical simulations confirm this picture. Our results indicate which experimental observables can be adopted in realistic devices to probe the physics and the phase transitions of the model. Additionally, our proposal provides a useful one-dimensional building block to design exotic topological order in two-dimensional scalable Josephson junction arrays.
现代混合超导-半导体约瑟夫森结阵列是用于模拟量子模拟的一个很有前景的平台。它们可控的非正弦能量-相位关系为实现非平凡相互作用和研究奇异量子相变的出现开辟了道路。在此,我们提议对定义两腿梯子几何结构的混合约瑟夫森结阵列进行分析,以用于三临界伊辛相变的量子模拟。这种相变提供了超越伊辛临界性的最小共形模型的典型例子,其激发与二维中的斐波那契非阿贝尔任意子和拓扑序密切相关。我们基于玻色化和矩阵乘积态技术研究这个超导系统及其热力学相。其用三频正弦-戈登量子场论进行的有效连续描述表明存在目标三临界点,数值模拟证实了这一图景。我们的结果表明在实际器件中可以采用哪些实验可观测量来探测该模型的物理和相变。此外,我们的提议为在二维可扩展约瑟夫森结阵列中设计奇异拓扑序提供了一个有用的一维构建块。