Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.
Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain; Facultad de Recursos Naturales Renovables, Universidad Arturo Prat, Iquique, Chile.
J Hazard Mater. 2024 Aug 15;475:134900. doi: 10.1016/j.jhazmat.2024.134900. Epub 2024 Jun 13.
The expected increments in the production/use of bioplastics, as an alternative to petroleum-based plastics, require a deep understanding of their potential environmental and health hazards, mainly as nanoplastics (NPLs). Since one important exposure route to NPLs is through inhalation, this study aims to determine the fate and effects of true-to-life polylactic acid nanoplastics (PLA-NPLs), using the in vitro Calu-3 model of bronchial epithelium, under air-liquid interphase exposure conditions. To determine the harmful effects of PLA-NPLs in a more realistic scenario, both acute (24 h) and long-term (1 and 2 weeks) exposures were used. Flow cytometry results indicated that PLA-NPLs internalized easily in the barrier (∼10 % at 24 h and ∼40 % after 2 weeks), which affected the expression of tight-junctions formation (∼50 % less vs control) and the mucus secretion (∼50 % more vs control), both measured by immunostaining. Interestingly, significant genotoxic effects (DNA breaks) were detected by using the comet assay, with long-term effects being more marked than acute ones (7.01 vs 4.54 % of DNA damage). When an array of cellular proteins including cytokines, chemokines, and growth factors were used, a significant over-expression was mainly found in long-term exposures (∼20 proteins vs 5 proteins after acute exposure). Overall, these results described the potential hazards posed by PLA-NPLs, under relevant long-term exposure scenarios, highlighting the advantages of the model used to study bronchial epithelium tissue damage, and signaling endpoints related to inflammation.
预期生物塑料(作为石油基塑料的替代品)的产量/使用量会增加,这需要深入了解其潜在的环境和健康危害,尤其是作为纳米塑料(NPLs)。由于接触 NPLs 的一个重要途径是通过吸入,因此本研究旨在使用体外支气管上皮细胞 Calu-3 模型,在气-液界面暴露条件下,确定真实聚乳酸纳米塑料(PLA-NPLs)的归宿和影响。为了在更现实的情况下确定 PLA-NPLs 的有害影响,我们使用了急性(24 小时)和长期(1 周和 2 周)暴露。流式细胞术结果表明,PLA-NPLs 很容易在屏障中内化(24 小时时约为 10%,2 周后约为 40%),这会影响紧密连接形成的表达(与对照组相比减少约 50%)和粘液分泌(与对照组相比增加约 50%),两者均通过免疫染色测量。有趣的是,使用彗星试验检测到明显的遗传毒性作用(DNA 断裂),长期作用比急性作用更明显(7.01%比 4.54%的 DNA 损伤)。当使用包括细胞因子、趋化因子和生长因子在内的一系列细胞蛋白时,主要在长期暴露中发现显著的过表达(与急性暴露后相比,约有 20 种蛋白,而只有 5 种蛋白)。总体而言,这些结果描述了 PLA-NPLs 在相关长期暴露情况下所带来的潜在危害,突出了该模型用于研究支气管上皮组织损伤和与炎症相关信号终点的优势。