Suppr超能文献

基于自然语言处理的人工智能模型在诊断伴有 L5 和 S1 神经根病的腰椎间盘突出症中的初步评价。

Natural Language Processing-Driven Artificial Intelligence Models for the Diagnosis of Lumbar Disc Herniation with L5 and S1 Radiculopathy: A Preliminary Evaluation.

机构信息

Department of Spine Surgery, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China.

Department of Orthopaedics, Yancheng Third People's Hospital, Yancheng, Jiangsu, China.

出版信息

World Neurosurg. 2024 Sep;189:e300-e309. doi: 10.1016/j.wneu.2024.06.041. Epub 2024 Jun 13.

Abstract

OBJECTIVE

To develop and validate natural language processing-driven artificial intelligence (AI) models for the diagnosis of lumbar disc herniation (LDH) with L5 and S1 radiculopathy using electronic health records (EHRs).

METHODS

EHRs of patients undergoing single-level percutaneous endoscopic lumbar discectomy for the treatment of LDH at the L4/5 or L5/S1 level between June 1, 2013, and December 31, 2021, were collected. The primary outcome was LDH with L5 and S1 radiculopathy, which was defined as nerve root compression recorded in the operative notes. Datasets were created using the history of present illness text and positive symptom text with radiculopathy (L5 or S1), respectively. The datasets were randomly split into a training set and a testing set in a 7:3 ratio. Two machine learning models, the long short-term memory network and Extreme Gradient Boosting, were developed using the training set. Performance evaluation of the models on the testing set was done using measures such as the receiver operating characteristic curve, area under the curve, accuracy, recall, F1-score, and precision.

RESULTS

The study included a total of 1681 patients, with 590 patients having L5 radiculopathy and 1091 patients having S1 radiculopathy. Among the 4 models developed, the long short-term memory model based on positive symptom text showed the best discrimination in the testing set, with precision (0.9054), recall (0.9405), accuracy (0.8950), F1-score (0.9226), and area under the curve (0.9485).

CONCLUSIONS

This study provides preliminary validation of the concept that natural language processing-driven AI models can be used for the diagnosis of lumbar disease using EHRs. This study could pave the way for future research that may develop more comprehensive and clinically impactful AI-driven diagnostic systems.

摘要

目的

开发和验证基于自然语言处理的人工智能(AI)模型,以利用电子健康记录(EHR)诊断 L5 和 S1 神经根病变的腰椎间盘突出症(LDH)。

方法

收集 2013 年 6 月 1 日至 2021 年 12 月 31 日期间因 L4/5 或 L5/S1 水平的单节段经皮内镜腰椎间盘切除术治疗的 LDH 患者的 EHR。主要结局是 L5 和 S1 神经根病变的 LDH,其定义为手术记录中记录的神经根受压。数据集分别使用病史正文和阳性症状正文(L5 或 S1)中的神经根病变创建。数据集以 7:3 的比例随机分为训练集和测试集。使用训练集开发两种机器学习模型,即长短期记忆网络和极端梯度提升。使用测试集对模型进行性能评估,评估指标包括接收者操作特征曲线、曲线下面积、准确性、召回率、F1 分数和精度。

结果

这项研究共纳入 1681 例患者,其中 590 例患者存在 L5 神经根病变,1091 例患者存在 S1 神经根病变。在开发的 4 个模型中,基于阳性症状正文的长短期记忆模型在测试集的鉴别能力最好,其精度为 0.9054、召回率为 0.9405、准确性为 0.8950、F1 分数为 0.9226 和曲线下面积为 0.9485。

结论

这项研究初步验证了自然语言处理驱动的 AI 模型可以用于使用 EHR 诊断腰椎疾病的概念。这项研究为未来可能开发更全面和具有临床影响力的 AI 驱动诊断系统的研究铺平了道路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验