Suppr超能文献

脊髓型颈椎病的自动检测:利用自然语言处理的力量

Automated detection of cervical spondylotic myelopathy: harnessing the power of natural language processing.

作者信息

Ren GuanRui, Wang PeiYang, Wang ZhiWei, Xie ZhiYang, Liu Lei, Wang YunTao, Wu XiaoTao

机构信息

Department of Orthopedics, Zhongda Hospital, Medical College, Southeast University, Nanjing, Jiangsu, China.

Department of Spine Surgery, Zhongda Hospital, Medical College, Southeast University, Nanjing, Jiangsu, China.

出版信息

Front Neurosci. 2025 Mar 19;19:1421792. doi: 10.3389/fnins.2025.1421792. eCollection 2025.

Abstract

BACKGROUND

The objective of this study was to develop machine learning (ML) algorithms utilizing natural language processing (NLP) techniques for the automated detection of cervical spondylotic myelopathy (CSM) through the analysis of positive symptoms in free-text admission notes. This approach enables the timely identification and management of CSM, leading to optimal outcomes.

METHODS

The dataset consisted of 1,214 patients diagnosed with cervical diseases as their primary condition between June 2013 and June 2020. A random ratio of 7:3 was employed to partition the dataset into training and testing subsets. Two machine learning models, Extreme Gradient Boosting (XGBoost) and Bidirectional Long Short Term Memory Network (LSTM), were developed. The performance of these models was assessed using various metrics, including the Receiver Operating Characteristic (ROC) curve, Area Under the Curve (AUC), accuracy, precision, recall, and F1 score.

RESULTS

In the testing set, the LSTM achieved an AUC of 0.9025, an accuracy of 0.8740, a recall of 0.9560, an F1 score of 0.9122, and a precision of 0.8723. The LSTM model demonstrated superior clinical applicability compared to the XGBoost model, as evidenced by calibration curves and decision curve analysis.

CONCLUSIONS

The timely identification of suspected CSM allows for prompt confirmation of diagnosis and treatment. The utilization of NLP algorithm demonstrated excellent discriminatory capabilities in identifying CSM based on positive symptoms in free-text admission notes complaint data. This study showcases the potential of a pre-diagnosis system in the field of spine.

摘要

背景

本研究的目的是开发利用自然语言处理(NLP)技术的机器学习(ML)算法,通过分析自由文本入院记录中的阳性症状来自动检测脊髓型颈椎病(CSM)。这种方法能够及时识别和管理CSM,从而实现最佳治疗效果。

方法

数据集由2013年6月至2020年6月期间以颈椎疾病为主要病症诊断的1214例患者组成。采用7:3的随机比例将数据集划分为训练集和测试集。开发了两种机器学习模型,即极端梯度提升(XGBoost)和双向长短期记忆网络(LSTM)。使用包括受试者工作特征(ROC)曲线、曲线下面积(AUC)、准确率、精确率、召回率和F1分数等各种指标评估这些模型的性能。

结果

在测试集中,LSTM的AUC为0.9025,准确率为0.8740,召回率为0.9560,F1分数为0.9122,精确率为0.8723。校准曲线和决策曲线分析表明,与XGBoost模型相比,LSTM模型具有更好的临床适用性。

结论

及时识别疑似CSM有助于迅速确诊和治疗。基于自由文本入院记录主诉数据中的阳性症状,利用NLP算法在识别CSM方面表现出优异的辨别能力。本研究展示了脊柱领域预诊断系统的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b26c/11962790/a0d3aa6a2042/fnins-19-1421792-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验