Daudé Pierre, Troalen Thomas, Mackowiak Adèle L C, Royer Emilien, Piccini Davide, Yerly Jérôme, Pfeuffer Josef, Kober Frank, Gouny Sylviane Confort, Bernard Monique, Stuber Matthias, Bastiaansen Jessica A M, Rapacchi Stanislas
Aix-Marseille Univ, CNRS, CRMBM, Marseille, France; APHM, Hôpital Universitaire Timone, CEMEREM, Marseille, France.
Siemens Healthcare SAS, Saint-Denis, France.
J Cardiovasc Magn Reson. 2024;26(2):101048. doi: 10.1016/j.jocmr.2024.101048. Epub 2024 Jun 13.
Metabolic diseases can negatively alter epicardial fat accumulation and composition, which can be probed using quantitative cardiac chemical shift encoded (CSE) cardiovascular magnetic resonance (CMR) by mapping proton-density fat fraction (PDFF). To obtain motion-resolved high-resolution PDFF maps, we proposed a free-running cardiac CSE-CMR framework at 3T. To employ faster bipolar readout gradients, a correction for gradient imperfections was added using the gradient impulse response function (GIRF) and evaluated on intermediate images and PDFF quantification.
Ten minutes free-running cardiac 3D radial CSE-CMR acquisitions were compared in vitro and in vivo at 3T. Monopolar and bipolar readout gradient schemes provided 8 echoes (TE1/ΔTE = 1.16/1.96 ms) and 13 echoes (TE1/ΔTE = 1.12/1.07 ms), respectively. Bipolar-gradient free-running cardiac fat and water images and PDFF maps were reconstructed with or without GIRF correction. PDFF values were evaluated in silico, in vitro on a fat/water phantom, and in vivo in 10 healthy volunteers and 3 diabetic patients.
In monopolar mode, fat-water swaps were demonstrated in silico and confirmed in vitro. Using bipolar readout gradients, PDFF quantification was reliable and accurate with GIRF correction with a mean bias of 0.03% in silico and 0.36% in vitro while it suffered from artifacts without correction, leading to a PDFF bias of 4.9% in vitro and swaps in vivo. Using bipolar readout gradients, in vivo PDFF of epicardial adipose tissue was significantly lower compared to subcutaneous fat (80.4 ± 7.1% vs 92.5 ± 4.3%, P < 0.0001).
Aiming for an accurate PDFF quantification, high-resolution free-running cardiac CSE-MRI imaging proved to benefit from bipolar echoes with k-space trajectory correction at 3T. This free-breathing acquisition framework enables to investigate epicardial adipose tissue PDFF in metabolic diseases.
代谢性疾病可对心外膜脂肪的蓄积和成分产生负面影响,可通过定量心脏化学位移编码(CSE)心血管磁共振成像(CMR)绘制质子密度脂肪分数(PDFF)来进行探究。为了获得运动分辨的高分辨率PDFF图谱,我们提出了一种在3T场强下的自由呼吸心脏CSE-CMR框架。为了采用更快的双极读出梯度,利用梯度脉冲响应函数(GIRF)对梯度缺陷进行校正,并在中间图像和PDFF定量分析中进行评估。
在3T场强下,对10分钟的自由呼吸心脏三维径向CSE-CMR采集进行体外和体内比较。单极和双极读出梯度方案分别提供8个回波(TE1/ΔTE = 1.16/1.96 ms)和13个回波(TE1/ΔTE = 1.12/1.07 ms)。采用或不采用GIRF校正重建双极梯度自由呼吸心脏脂肪和水图像以及PDFF图谱。在计算机模拟、脂肪/水模体的体外实验以及10名健康志愿者和3名糖尿病患者的体内实验中评估PDFF值。
在单极模式下,可以在计算机模拟中证明并在体外实验中确认脂肪-水交换现象。使用双极读出梯度时,经过GIRF校正后,PDFF定量分析可靠且准确,在计算机模拟中的平均偏差为0.03%,在体外实验中为0.36%;而未校正时会出现伪影,导致体外实验中PDFF偏差为4.9%,体内实验中出现脂肪-水交换。使用双极读出梯度时,心外膜脂肪组织的体内PDFF显著低于皮下脂肪(80.4±7.1%对92.5±4.3%,P<0.0001)。
为了实现准确的PDFF定量分析,高分辨率自由呼吸心脏CSE-MRI成像在3T场强下采用具有k空间轨迹校正的双极回波显示出优势。这种自由呼吸采集框架能够用于研究代谢性疾病中的心外膜脂肪组织PDFF。