Suppr超能文献

使用分辨率增强网络的加速化学位移编码心血管磁共振成像

Accelerated chemical shift encoded cardiovascular magnetic resonance imaging with use of a resolution enhancement network.

作者信息

Morales Manuel A, Johnson Scott, Pierce Patrick, Nezafat Reza

机构信息

Department of Medicine (Cardiovascular Division), Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA.

Department of Medicine (Cardiovascular Division), Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA.

出版信息

J Cardiovasc Magn Reson. 2024;26(2):101090. doi: 10.1016/j.jocmr.2024.101090. Epub 2024 Sep 5.

Abstract

BACKGROUND

Cardiovascular magnetic resonance (CMR) chemical shift encoding (CSE) enables myocardial fat imaging. We sought to develop a deep learning network (fast chemical shift encoding [FastCSE]) to accelerate CSE.

METHODS

FastCSE was built on a super-resolution generative adversarial network extended to enhance complex-valued image sharpness. FastCSE enhances each echo image independently before water-fat separation. FastCSE was trained with retrospectively identified cines from 1519 patients (56 ± 16 years; 866 men) referred for clinical 3T CMR. In a prospective study of 16 participants (58 ± 19 years; 7 females) and 5 healthy individuals (32 ± 17 years; 5 females), dual-echo CSE images were collected with 1.5 × 1.5 mm, 2.5 × 1.5 mm, and 3.8 × 1.9 mm resolution using generalized autocalibrating partially parallel acquisition (GRAPPA). FastCSE was applied to images collected with resolution of 2.5 × 1.5 mm and 3.8 × 1.9 mm to restore sharpness. Fat images obtained from two-point Dixon reconstruction were evaluated using a quantitative blur metric and analyzed with a five-way analysis of variance.

RESULTS

FastCSE successfully reconstructed CSE images inline. FastCSE acquisition, with a resolution of 2.5 × 1.5 mm and 3.8 × 1.9 mm, reduced the number of breath-holds without impacting visualization of fat by approximately 1.5-fold and 3-fold compared to GRAPPA acquisition with a resolution of 1.5 × 1.5 mm, from 3.0 ± 0.8 breath-holds to 2.0 ± 0.2 and 1.1 ± 0.4 breath-holds, respectively. FastCSE improved image sharpness and removed ringing artifacts in GRAPPA fat images acquired with a resolution of 2.5 × 1.5 mm (0.32 ± 0.03 vs 0.35 ± 0.04, P < 0.001) and 3.8 × 1.9 mm (0.32 ± 0.03 vs 0.43 ± 0.06, P < 0.001). Blurring in FastCSE images was similar to blurring in images with 1.5 × 1.5 mm resolution (0.32 ± 0.03 vs 0.31 ± 0.03, P = 0.57; 0.32 ± 0.03 vs 0.31 ± 0.03, P = 0.66).

CONCLUSION

We showed that a deep learning-accelerated CSE technique based on complex-valued resolution enhancement can reduce the number of breath-holds in CSE imaging without impacting the visualization of fat. FastCSE showed similar image sharpness compared to a standardized parallel imaging method.

摘要

背景

心血管磁共振(CMR)化学位移编码(CSE)可实现心肌脂肪成像。我们试图开发一种深度学习网络(快速化学位移编码[FastCSE])以加速CSE。

方法

FastCSE基于扩展的超分辨率生成对抗网络构建,以增强复值图像清晰度。FastCSE在水脂分离前独立增强每个回波图像。使用来自1519例因临床3T CMR检查而转诊的患者(年龄56±16岁;男性866例)的回顾性识别的电影图像对FastCSE进行训练。在一项针对16名参与者(年龄58±19岁;女性7例)和5名健康个体(年龄32±17岁;女性5例)的前瞻性研究中,使用广义自校准部分并行采集(GRAPPA),以1.5×1.5mm、2.5×1.5mm和3.8×1.9mm的分辨率采集双回波CSE图像。将FastCSE应用于以2.5×1.5mm和3.8×1.9mm分辨率采集的图像以恢复清晰度。使用定量模糊度量评估从两点Dixon重建获得的脂肪图像,并采用五因素方差分析进行分析。

结果

FastCSE成功在线重建CSE图像。与分辨率为1.5×1.5mm的GRAPPA采集相比,分辨率为2.5×1.5mm和3.8×1.9mm的FastCSE采集分别将屏气次数减少了约1.5倍和3倍,且不影响脂肪可视化,屏气次数从3.0±0.8次分别降至2.0±0.2次和1.1±0.4次。FastCSE提高了图像清晰度,并消除了以2.5×1.5mm(0.32±0.03对0.35±0.04,P<0.001)和3.8×1.9mm(0.32±0.03对0.43±0.06,P<0.001)分辨率采集的GRAPPA脂肪图像中的振铃伪影。FastCSE图像中的模糊与分辨率为1.5×1.5mm的图像中的模糊相似(0.32±0.03对0.31±0.03,P=0.57;0.32±0.03对0.31±0.03,P=0.66)。

结论

我们表明,基于复值分辨率增强的深度学习加速CSE技术可减少CSE成像中的屏气次数,且不影响脂肪可视化。与标准化并行成像方法相比,FastCSE显示出相似的图像清晰度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91a4/11612775/7316276dbea5/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验