Aix-Marseille Univ, CNRS, CRMBM, Marseille, France.
APHM, Hôpital Universitaire Timone, CEMEREM, Marseille, France.
Magn Reson Med. 2024 Feb;91(2):741-759. doi: 10.1002/mrm.29860. Epub 2023 Oct 10.
To propose a standardized comparison between state-of-the-art open-source fat-water separation algorithms for proton density fat fraction (PDFF) and quantification using an open-source multi-language toolbox.
Eight recent open-source fat-water separation algorithms were compared in silico, in vitro, and in vivo. Multi-echo data were synthesized with varying fat-fractions, B off-resonance, SNR and TEs. Experimental evaluation was conducted using calibrated fat-water phantoms acquired at 3T and multi-site open-source phantoms data. Algorithms' performances were observed on challenging in vivo datasets at 3T. Finally, reconstruction algorithms were investigated with different fat spectra to evaluate the importance of the fat model.
In silico and in vitro results proved most algorithms to be not sensitive to fat-water swaps and offsets with five or more echoes. However, two methods remained inaccurate even with seven echoes and SNR = 50, and two other algorithms' precision depended on the echo spacing scheme (p < 0.05). The remaining four algorithms provided reliable performances with limits of agreement under 2% for PDFF and 6 s for . The choice of fat spectrum model influenced quantification of PDFF mildly (<2% bias) and of more severely, with errors up to 20 s .
In promoting standardized comparisons of MRI-based fat and iron quantification using chemical-shift encoded multi-echo methods, this benchmark work has revealed some discrepancies between recent approaches for PDFF and mapping. Explicit choices and parameterization of the fat-water algorithm appear necessary for reproducibility. This open-source toolbox further enables the user to optimize acquisition parameters by predicting algorithms' margins of errors.
提出一种标准化的比较,比较最先进的开源质子密度脂肪分数(PDFF)和定量的脂肪水分离算法,使用开源多语言工具箱。
在计算机、体外和体内对 8 种最近的开源脂肪水分离算法进行了比较。使用不同的脂肪分数、B 离共振、SNR 和 TE 来合成多回波数据。使用在 3T 获得的校准的脂肪水幻影和多站点开源幻影数据进行了实验评估。在 3T 的挑战性体内数据集上观察了算法的性能。最后,研究了不同脂肪谱的重建算法,以评估脂肪模型的重要性。
计算机和体外的结果表明,大多数算法对脂肪水交换和偏移不敏感,具有五个或更多的回声。然而,两种方法即使有七个回声和 SNR=50 也不准确,另外两种算法的精度取决于回波间隔方案(p<0.05)。其余四种算法具有可靠的性能,PDFF 的一致性界限在 2%以内,为 6 s。脂肪谱模型的选择对 PDFF 的定量影响很小(<2%的偏差),对 定量的影响更严重,误差高达 20 s。
在促进基于化学位移编码多回波方法的 MRI 脂肪和铁定量的标准化比较中,这项基准工作揭示了 PDFF 和 映射的最近方法之间的一些差异。脂肪水算法的显式选择和参数化对于再现性是必要的。这个开源工具箱还可以通过预测算法的误差幅度来帮助用户优化采集参数。