Suppr超能文献

人工智能(AI)辅助学术创作的出版基础设施。

A publishing infrastructure for Artificial Intelligence (AI)-assisted academic authoring.

机构信息

Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO 80045, United States.

Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States.

出版信息

J Am Med Inform Assoc. 2024 Sep 1;31(9):2103-2113. doi: 10.1093/jamia/ocae139.

Abstract

OBJECTIVE

Investigate the use of advanced natural language processing models to streamline the time-consuming process of writing and revising scholarly manuscripts.

MATERIALS AND METHODS

For this purpose, we integrate large language models into the Manubot publishing ecosystem to suggest revisions for scholarly texts. Our AI-based revision workflow employs a prompt generator that incorporates manuscript metadata into templates, generating section-specific instructions for the language model. The model then generates revised versions of each paragraph for human authors to review. We evaluated this methodology through 5 case studies of existing manuscripts, including the revision of this manuscript.

RESULTS

Our results indicate that these models, despite some limitations, can grasp complex academic concepts and enhance text quality. All changes to the manuscript are tracked using a version control system, ensuring transparency in distinguishing between human- and machine-generated text.

CONCLUSIONS

Given the significant time researchers invest in crafting prose, incorporating large language models into the scholarly writing process can significantly improve the type of knowledge work performed by academics. Our approach also enables scholars to concentrate on critical aspects of their work, such as the novelty of their ideas, while automating tedious tasks like adhering to specific writing styles. Although the use of AI-assisted tools in scientific authoring is controversial, our approach, which focuses on revising human-written text and provides change-tracking transparency, can mitigate concerns regarding AI's role in scientific writing.

摘要

目的

研究使用先进的自然语言处理模型来简化撰写和修订学术文献这一耗时的过程。

材料与方法

为此,我们将大型语言模型集成到 Manubot 出版生态系统中,以对学术文本提出修订建议。我们的基于人工智能的修订工作流程采用提示生成器,将手稿元数据纳入模板,为语言模型生成特定于部分的指令。然后,该模型为人类作者生成每个段落的修订版本以供审阅。我们通过 5 个现有手稿的案例研究评估了这种方法,包括对本手稿的修订。

结果

我们的结果表明,这些模型尽管存在一些局限性,但能够理解复杂的学术概念并提高文本质量。使用版本控制系统跟踪对稿件的所有更改,从而确保在区分人机生成的文本时具有透明度。

结论

鉴于研究人员在撰写散文上投入了大量时间,如果将大型语言模型纳入学术写作过程,将显著提高学者从事的知识工作类型。我们的方法还使学者能够专注于他们工作的关键方面,例如他们的想法的新颖性,同时自动化遵守特定写作风格等乏味的任务。尽管在科学创作中使用 AI 辅助工具存在争议,但我们的方法侧重于修订人类撰写的文本并提供更改跟踪透明度,可以减轻人们对 AI 在科学写作中作用的担忧。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae01/11339502/18e474732c8e/ocae139f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验