School of Life Sciences, Lanzhou University, Lanzhou, 730000, Gansu, China; State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, Gansu, China.
Key Laboratory of Microbial Resources Exploitation and Application of Gansu Province, Institute of Biology, Gansu Academy of Sciences, Lanzhou, 730000, Gansu, China.
Plant Physiol Biochem. 2024 Aug;213:108839. doi: 10.1016/j.plaphy.2024.108839. Epub 2024 Jun 13.
Physio-biochemical regulations governing crop growth period are pivotal for drought adaptation. Yet, the extent to which functionality of arbuscular mycorrhizal fungi (AM fungi) varies across different stages of maize growth under drought conditions remains uncertain. Therefore, periodic functionality of two different AM fungi i.e., Rhizophagus irregularis SUN16 and Glomus monosporum WUM11 were assessed at jointing, silking, and pre-harvest stages of maize subjected to different soil moisture gradients i.e., well-watered (80% SMC (soil moisture contents)), moderate drought (60% SMC), and severe drought (40% SMC). The study found that AM fungi significantly (p < 0.05) affected various morpho-physiological and biochemical parameters at different growth stages of maize under drought. As the plants matured, AM fungi enhanced root colonization, glomalin contents, and microbial biomass, leading to increased nutrient uptake and antioxidant activity. This boosted AM fungal activity ultimately improved photosynthetic efficiency, evident in increased photosynthetic pigments and photosynthesis. Notably, R. irregularis and G. monosporum improved water use efficiency and mycorrhizal dependency at critical growth stages like silking and pre-harvest, indicating their potential for drought resilience to stabilize yield. The principal component analysis highlighted distinct plant responses to drought across growth stages and AM fungi, emphasizing the importance of early-stage sensitivity. These findings underscore the potential of incorporating AM fungi into agricultural management practices to enhance physiological and biochemical responses, ultimately improving drought tolerance and yield in dryland maize cultivation.
调控作物生长周期的生理生化机制对于耐旱性至关重要。然而,在干旱条件下,丛枝菌根真菌(AM 真菌)在玉米不同生长阶段的功能变化程度尚不确定。因此,在不同土壤水分梯度下(充分供水[80% 田间持水量(SMC)]、中度干旱[60% SMC]和严重干旱[40% SMC]),对玉米分枝期、抽丝期和收获前分别接种两种不同 AM 真菌(即不规则丛枝菌根 SUN16 和单孢丛枝菌根 WUM11)的周期性功能进行了评估。研究发现,AM 真菌在玉米不同生长阶段的干旱条件下,对各种形态生理和生化参数有显著影响(p < 0.05)。随着植物的成熟,AM 真菌增强了根定植、球囊霉素含量和微生物生物量,从而增加了养分吸收和抗氧化活性。这促进了 AM 真菌的活性,最终提高了光合作用效率,表现在增加的光合色素和光合作用上。值得注意的是,不规则丛枝菌根和单孢丛枝菌根在玉米的抽丝期和收获前等关键生长阶段提高了水分利用效率和菌根依赖性,表明它们在干旱恢复方面具有稳定产量的潜力。主成分分析突出了不同生长阶段和 AM 真菌下植物对干旱的反应,强调了早期敏感性的重要性。这些发现强调了将 AM 真菌纳入农业管理实践中的潜力,以增强生理生化反应,最终提高旱地玉米栽培中的耐旱性和产量。