Baykara Haci, Riofrio Ariel, Garcia-Troncoso Natividad, Cornejo Mauricio, Tello-Ayala Ken, Flores Rada Jorge, Caceres Julio
Facultad de Ingeniería Mecánica y Ciencias de la Producción, Escuela Superior Politécnica del Litoral, ESPOL. Km 30.5 Vía Perimetral, Guayaquil 090112, Ecuador.
Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water BAY, Kowloon Hong Kong SAR.
ACS Omega. 2024 May 30;9(23):24978-24986. doi: 10.1021/acsomega.4c02040. eCollection 2024 Jun 11.
The increasing environmental concerns about synthetic polymers as reinforcement in the construction industry have highlighted the need for eco-friendly, biodegradable fibers as potential alternative materials for cementitious composites. This study examines the influence of chitosan particle concentrations on the midterm compressive strength of mortars. Chitosan particles, derived from shrimp shells, were mixed with high early strength hydraulic cement at various percentages (0, 0.05, 0.25, 0.5, 1, and 2 wt %) and silica sand to prepare the mortar samples. The findings indicate that chitosan affects the hydration process through the distribution of chitosan particles within the mortar matrix and slightly improved midterm mechanical properties. A life cycle assessment (LCA) revealed a slight increase in greenhouse gas emissions and embodied energy for chitosan-modified mortars, likely due to the use of chemicals in the chitosan synthesis and purification process. In fact, the addition of 0.25 wt % of chitosan into the mortar only added 1.3% of the global warming potential of the sample when compared to the control sample. Incorporating chitosan into a mortar matrix does not significantly affect the resistance-mechanical properties of the composite. The hydration of the cement mortar appears to be slowed by the inclusion of chitosan particles in the cementitious matrix. This research lays the groundwork as one of the first studies for the development of high-performance, early strength cement using chitosan, contributing to a more sustainable construction industry.
建筑行业中对合成聚合物作为增强材料的环境担忧日益增加,这凸显了对生态友好、可生物降解纤维作为水泥基复合材料潜在替代材料的需求。本研究考察了壳聚糖颗粒浓度对砂浆中期抗压强度的影响。从虾壳中提取的壳聚糖颗粒与高早强水硬性水泥按不同百分比(0、0.05、0.25、0.5、1和2 wt%)以及硅砂混合,制备砂浆样品。研究结果表明,壳聚糖通过其在砂浆基体中的分布影响水化过程,并略微改善了中期力学性能。生命周期评估(LCA)显示,壳聚糖改性砂浆的温室气体排放量和隐含能量略有增加,这可能是由于壳聚糖合成和纯化过程中使用了化学物质。事实上,与对照样品相比,在砂浆中添加0.25 wt%的壳聚糖仅使样品的全球变暖潜能增加了1.3%。将壳聚糖掺入砂浆基体中不会显著影响复合材料的抗力学性能。在水泥基体中加入壳聚糖颗粒似乎会减缓水泥砂浆的水化。本研究作为首批使用壳聚糖开发高性能、早强水泥的研究之一奠定了基础,有助于打造更具可持续性的建筑行业。
Sci Total Environ. 2024-1-10
Materials (Basel). 2023-2-6
Materials (Basel). 2023-10-17
Materials (Basel). 2021-5-31
Materials (Basel). 2025-3-31
Crit Rev Biotechnol. 2012-10-18
J Hazard Mater. 2011-8-5
Int J Biol Macromol. 2002-12-20