Suppr超能文献

阿布里科索夫涡旋对外延石墨烯中有效磁场增强的修正

Abrikosov vortex corrections to effective magnetic field enhancement in epitaxial graphene.

作者信息

Marie Luke R St, Liu Chieh-I, Hu I-Fan, Hill Heather M, Saha Dipanjan, Elmquist Randolph E, Lian Chi-Te, Newell David B, Barbara Paola, Hagmann Joseph A, Rigosi Albert F

机构信息

Physical Measurement Laboratory, National Institute of Standards and Technology (NIST), Gaithersburg, Maryland 20899, USA.

Department of Physics, Georgetown University, Washington, DC 20057, USA.

出版信息

Phys Rev B. 2021 Aug;104(8). doi: 10.1103/physrevb.104.085435.

Abstract

Here, we report the effects of enhanced magnetic fields resulting from type-II superconducting NbTiN slabs adjacent to narrow Hall bar devices fabricated from epitaxial graphene. Observed changes in the magnetoresistances were found to have minimal contributions from device inhomogeneities, magnet hysteresis, electron density variations along the devices, and transient phenomena. We hypothesize that Abrikosov vortices, present in type-II superconductors, contribute to these observations. By determining the London penetration depth, coupled with elements of Ginzburg-Landau theory, one can approximate an upper bound on the effect that vortex densities at low fields (< 1T) have on the reported observations. These analyses offer insights into device fabrication and how to utilize the Meissner effect for any low-field and low-temperature applications using superconductors.

摘要

在此,我们报告了与由外延石墨烯制成的窄霍尔条形器件相邻的II型超导NbTiN平板所产生的增强磁场的影响。发现磁阻的观测变化在器件不均匀性、磁滞、沿器件的电子密度变化和瞬态现象方面的贡献极小。我们推测,II型超导体中存在的阿布里科索夫涡旋导致了这些观测结果。通过确定伦敦穿透深度,并结合金兹堡 - 朗道理论的要素,可以估算低场(<1T)下涡旋密度对所报告观测结果的影响上限。这些分析为器件制造以及如何在使用超导体的任何低场和低温应用中利用迈斯纳效应提供了见解。

相似文献

1
Abrikosov vortex corrections to effective magnetic field enhancement in epitaxial graphene.
Phys Rev B. 2021 Aug;104(8). doi: 10.1103/physrevb.104.085435.
2
Superconducting vortices in CeCoIn5: toward the Pauli-limiting field.
Science. 2008 Jan 11;319(5860):177-80. doi: 10.1126/science.1150600.
4
Magnetic-Field-Induced Re-entrance of Superconductivity in TaPdS Nanostrips.
Nano Lett. 2021 Jan 13;21(1):288-297. doi: 10.1021/acs.nanolett.0c03655. Epub 2020 Dec 21.
5
Nucleation and arrangement of Abrikosov vortices in hybrid superconductor-ferromagnet nanostructures.
Nanoscale Horiz. 2025 Jun 23;10(7):1453-1464. doi: 10.1039/d4nh00618f.
6
Transition from slow Abrikosov to fast moving Josephson vortices in iron pnictide superconductors.
Nat Mater. 2013 Feb;12(2):134-8. doi: 10.1038/nmat3489. Epub 2012 Nov 25.
7
Tunable Noninteger Flux Quantum of Vortices in Superconducting Strips.
Nano Lett. 2022 Sep 14;22(17):7151-7157. doi: 10.1021/acs.nanolett.2c02356. Epub 2022 Aug 18.
8
Parallel magnetic field suppresses dissipation in superconducting nanostrips.
Proc Natl Acad Sci U S A. 2017 Nov 28;114(48):E10274-E10280. doi: 10.1073/pnas.1619550114. Epub 2017 Nov 13.
9
Imaging of super-fast dynamics and flow instabilities of superconducting vortices.
Nat Commun. 2017 Jul 20;8(1):85. doi: 10.1038/s41467-017-00089-3.

本文引用的文献

1
Imaging Andreev Reflection in Graphene.
Nano Lett. 2020 Jul 8;20(7):4890-4894. doi: 10.1021/acs.nanolett.0c00903. Epub 2020 Jun 9.
2
The Quantum Hall Effect in the Era of the New SI.
Semicond Sci Technol. 2019;34(9). doi: 10.1088/1361-6641/ab37d3.
5
Graphene Devices for Tabletop and High-Current Quantized Hall Resistance Standards.
IEEE Trans Instrum Meas. 2018;68. doi: 10.1109/TIM.2018.2882958.
9
A ballistic graphene superconducting microwave circuit.
Nat Commun. 2018 Oct 4;9(1):4069. doi: 10.1038/s41467-018-06595-2.
10
h/e Superconducting Quantum Interference through Trivial Edge States in InAs.
Phys Rev Lett. 2018 Jan 26;120(4):047702. doi: 10.1103/PhysRevLett.120.047702.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验