Kavli Institute of Nanoscience, Delft University of Technology, PO Box, 5046, 2600 GA, Delft, The Netherlands.
National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan.
Nat Commun. 2018 Oct 4;9(1):4069. doi: 10.1038/s41467-018-06595-2.
Josephson junctions (JJ) are a fundamental component of microwave quantum circuits, such as tunable cavities, qubits, and parametric amplifiers. Recently developed encapsulated graphene JJs, with supercurrents extending over micron distance scales, have exciting potential applications as a new building block for quantum circuits. Despite this, the microwave performance of this technology has not been explored. Here, we demonstrate a microwave circuit based on a ballistic graphene JJ embedded in a superconducting cavity. We directly observe a gate-tunable Josephson inductance through the resonance frequency of the device and, using a detailed RF model, we extract this inductance quantitatively. We also observe the microwave losses of the device, and translate this into sub-gap resistances of the junction at μeV energy scales, not accessible in DC measurements. The microwave performance we observe here suggests that graphene Josephson junctions are a feasible platform for implementing coherent quantum circuits.
约瑟夫森结 (JJ) 是微波量子电路的基本组成部分,例如可调谐腔、量子位和参量放大器。最近开发的封装石墨烯 JJ,其超导电流可扩展到微米距离尺度,具有作为量子电路的新构建块的令人兴奋的潜在应用。尽管如此,这项技术的微波性能尚未得到探索。在这里,我们展示了一个基于嵌入在超导腔中的弹道石墨烯 JJ 的微波电路。我们通过器件的共振频率直接观察到可门控的约瑟夫森电感,并使用详细的射频模型对其进行定量提取。我们还观察到器件的微波损耗,并将其转换为结在 μeV 能量尺度上的亚带隙电阻,这在直流测量中是无法达到的。我们在这里观察到的微波性能表明,石墨烯约瑟夫森结是实现相干量子电路的可行平台。