Suppr超能文献

通过卤代标签富集质谱法绘制脂肪细胞相互作用组网络

Mapping adipocyte interactome networks by HaloTag-enrichment-mass spectrometry.

作者信息

Yazaki Junshi, Yamanashi Takashi, Nemoto Shino, Kobayashi Atsuo, Han Yong-Woon, Hasegawa Tomoko, Iwase Akira, Ishikawa Masaki, Konno Ryo, Imami Koshi, Kawashima Yusuke, Seita Jun

机构信息

Laboratory for Integrative Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan.

Faculty of Agriculture, Laboratory for Genome Biology, Setsunan University, Osaka, 573-0101, Japan.

出版信息

Biol Methods Protoc. 2024 May 29;9(1):bpae039. doi: 10.1093/biomethods/bpae039. eCollection 2024.

Abstract

Mapping protein interaction complexes in their natural state is arguably the Holy Grail of protein network analysis. Detection of protein interaction stoichiometry has been an important technical challenge, as few studies have focused on this. This may, however, be solved by artificial intelligence (AI) and proteomics. Here, we describe the development of HaloTag-based affinity purification mass spectrometry (HaloMS), a high-throughput HaloMS assay for protein interaction discovery. The approach enables the rapid capture of newly expressed proteins, eliminating tedious conventional one-by-one assays. As a proof-of-principle, we used HaloMS to evaluate the protein complex interactions of 17 regulatory proteins in human adipocytes. The adipocyte interactome network was validated using an pull-down assay and AI-based prediction tools. Applying HaloMS to probe adipocyte differentiation facilitated the identification of previously unknown transcription factor (TF)-protein complexes, revealing proteome-wide human adipocyte TF networks and shedding light on how different pathways are integrated.

摘要

在自然状态下绘制蛋白质相互作用复合物可以说是蛋白质网络分析的圣杯。蛋白质相互作用化学计量学的检测一直是一项重要的技术挑战,因为很少有研究关注这一点。然而,这可能通过人工智能(AI)和蛋白质组学来解决。在这里,我们描述了基于HaloTag的亲和纯化质谱(HaloMS)的开发,这是一种用于蛋白质相互作用发现的高通量HaloMS检测方法。该方法能够快速捕获新表达的蛋白质,省去了繁琐的传统逐一检测方法。作为原理验证,我们使用HaloMS评估了人类脂肪细胞中17种调节蛋白的蛋白质复合物相互作用。使用下拉检测和基于AI的预测工具对脂肪细胞相互作用组网络进行了验证。应用HaloMS探测脂肪细胞分化有助于识别以前未知的转录因子(TF)-蛋白质复合物,揭示全蛋白质组范围内的人类脂肪细胞TF网络,并阐明不同途径是如何整合的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/06bd/11180226/21b3e587649d/bpae039f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验