Department of Psychology, UCLA, Pritzker, Los Angeles, CA, 90095, USA.
Behav Res Methods. 2024 Oct;56(7):7391-7409. doi: 10.3758/s13428-024-02426-z. Epub 2024 Jun 17.
Recently, Asparouhov and Muthén Structural Equation Modeling: A Multidisciplinary Journal, 28, 1-14, (2021a, 2021b) proposed a variant of the Wald test that uses Markov chain Monte Carlo machinery to generate a chi-square test statistic for frequentist inference. Because the test's composition does not rely on analytic expressions for sampling variation and covariation, it potentially provides a way to get honest significance tests in cases where the likelihood-based test statistic's assumptions break down (e.g., in small samples). The goal of this study is to use simulation to compare the new MCM Wald test to its maximum likelihood counterparts, with respect to both their type I error rate and power. Our simulation examined the test statistics across different levels of sample size, effect size, and degrees of freedom (test complexity). An additional goal was to assess the robustness of the MCMC Wald test with nonnormal data. The simulation results uniformly demonstrated that the MCMC Wald test was superior to the maximum likelihood test statistic, especially with small samples (e.g., sample sizes less than 150) and complex models (e.g., models with five or more predictors). This conclusion held for nonnormal data as well. Lastly, we provide a brief application to a real data example.
最近,Asparouhov 和 Muthén 的《结构方程建模:多学科杂志》,28, 1-14,(2021a, 2021b)提出了 Wald 检验的一种变体,该变体使用马尔可夫链蒙特卡罗机制为频率推断生成卡方检验统计量。由于该检验的组成不依赖于用于抽样变异和协变的分析表达式,因此它可能为似然检验统计量的假设失效的情况下(例如,在小样本中)提供了一种获得诚实的显著性检验的方法。本研究的目的是通过模拟比较新的 MCM Wald 检验与其最大似然对应物,在它们的 I 型错误率和功效方面。我们的模拟研究了不同样本量、效应量和自由度(测试复杂度)水平下的检验统计量。另一个目标是评估非正态数据对 MCMC Wald 检验的稳健性。模拟结果一致表明,MCMC Wald 检验优于最大似然检验统计量,尤其是在小样本(例如,样本量小于 150)和复杂模型(例如,具有五个或更多预测因子的模型)的情况下。对于非正态数据也是如此。最后,我们提供了一个真实数据示例的简要应用。