Suppr超能文献

利用机器学习算法预测产后血红蛋白水平。

Prediction of post-delivery hemoglobin levels with machine learning algorithms.

机构信息

Student Research Committee, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran.

Neuroscience Research Center, Iran University of Medical Sciences, Tehran, Iran.

出版信息

Sci Rep. 2024 Jun 17;14(1):13953. doi: 10.1038/s41598-024-64278-z.

Abstract

Predicting postpartum hemorrhage (PPH) before delivery is crucial for enhancing patient outcomes, enabling timely transfer and implementation of prophylactic therapies. We attempted to utilize machine learning (ML) using basic pre-labor clinical data and laboratory measurements to predict postpartum Hemoglobin (Hb) in non-complicated singleton pregnancies. The local databases of two academic care centers on patient delivery were incorporated into the current study. Patients with preexisting coagulopathy, traumatic cases, and allogenic blood transfusion were excluded from all analyses. The association of pre-delivery variables with 24-h post-delivery hemoglobin level was evaluated using feature selection with Elastic Net regression and Random Forest algorithms. A suite of ML algorithms was employed to predict post-delivery Hb levels. Out of 2051 pregnant women, 1974 were included in the final analysis. After data pre-processing and redundant variable removal, the top predictors selected via feature selection for predicting post-delivery Hb were parity (B: 0.09 [0.05-0.12]), gestational age, pre-delivery hemoglobin (B:0.83 [0.80-0.85]) and fibrinogen levels (B:0.01 [0.01-0.01]), and pre-labor platelet count (B*1000: 0.77 [0.30-1.23]). Among the trained algorithms, artificial neural network provided the most accurate model (Root mean squared error: 0.62), which was subsequently deployed as a web-based calculator: https://predictivecalculators.shinyapps.io/ANN-HB . The current study shows that ML models could be utilized as accurate predictors of indirect measures of PPH and can be readily incorporated into healthcare systems. Further studies with heterogenous population-based samples may further improve the generalizability of these models.

摘要

预测产后出血 (PPH) 对于改善患者预后至关重要,能够及时转移和实施预防性治疗。我们试图使用机器学习 (ML) 利用基本的产前临床数据和实验室测量来预测非复杂单胎妊娠的产后血红蛋白 (Hb)。当前研究纳入了两个学术护理中心的患者分娩数据库。排除了所有分析中存在先前凝血障碍、创伤性病例和异体输血的患者。使用弹性网络回归和随机森林算法进行特征选择,评估产前变量与 24 小时产后血红蛋白水平的关联。使用一系列 ML 算法预测产后 Hb 水平。在 2051 名孕妇中,有 1974 名孕妇纳入最终分析。在数据预处理和去除冗余变量后,通过特征选择选择用于预测产后 Hb 的顶级预测因子是产次(B:0.09 [0.05-0.12])、胎龄、产前血红蛋白(B:0.83 [0.80-0.85])和纤维蛋白原水平(B:0.01 [0.01-0.01])以及产前血小板计数(B*1000:0.77 [0.30-1.23])。在训练的算法中,人工神经网络提供了最准确的模型(均方根误差:0.62),随后将其部署为基于网络的计算器:https://predictivecalculators.shinyapps.io/ANN-HB。本研究表明,ML 模型可用作 PPH 的间接指标的准确预测因子,并可轻松纳入医疗保健系统。使用异质人群样本的进一步研究可能会进一步提高这些模型的泛化能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b1a0/11183065/c0f45bd7275c/41598_2024_64278_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验