Suppr超能文献

多角色 ChatGPT 框架,用于医疗数据分析转换。

Multi role ChatGPT framework for transforming medical data analysis.

机构信息

School of Management, Shanxi Medical University, Taiyuan, 030000, China.

Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, 100853, China.

出版信息

Sci Rep. 2024 Jun 17;14(1):13930. doi: 10.1038/s41598-024-64585-5.

Abstract

The application of ChatGPTin the medical field has sparked debate regarding its accuracy. To address this issue, we present a Multi-Role ChatGPT Framework (MRCF), designed to improve ChatGPT's performance in medical data analysis by optimizing prompt words, integrating real-world data, and implementing quality control protocols. Compared to the singular ChatGPT model, MRCF significantly outperforms traditional manual analysis in interpreting medical data, exhibiting fewer random errors, higher accuracy, and better identification of incorrect information. Notably, MRCF is over 600 times more time-efficient than conventional manual annotation methods and costs only one-tenth as much. Leveraging MRCF, we have established two user-friendly databases for efficient and straightforward drug repositioning analysis. This research not only enhances the accuracy and efficiency of ChatGPT in medical data science applications but also offers valuable insights for data analysis models across various professional domains.

摘要

ChatGPT 在医学领域的应用引发了关于其准确性的争议。针对这个问题,我们提出了一个多角色 ChatGPT 框架(MRCF),旨在通过优化提示词、整合真实世界的数据以及实施质量控制协议来提高 ChatGPT 在医学数据分析中的性能。与单一的 ChatGPT 模型相比,MRCF 在解释医学数据方面显著优于传统的手动分析,随机错误更少,准确性更高,并且能够更好地识别错误信息。值得注意的是,MRCF 的效率比传统的手动注释方法高 600 多倍,成本仅为其十分之一。我们利用 MRCF 建立了两个用户友好的数据库,用于高效、直接的药物重定位分析。这项研究不仅提高了 ChatGPT 在医学数据科学应用中的准确性和效率,而且为各个专业领域的数据分析模型提供了有价值的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2752/11183233/42034796af11/41598_2024_64585_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验