Suppr超能文献

连接人工智能与生物科学:生物信息学中大型语言模型的全面综述

Bridging artificial intelligence and biological sciences: a comprehensive review of large language models in bioinformatics.

作者信息

Lin Anqi, Ye Junpu, Qi Chang, Zhu Lingxuan, Mou Weiming, Gan Wenyi, Zeng Dongqiang, Tang Bufu, Xiao Mingjia, Chu Guangdi, Peng Shengkun, Wong Hank Z H, Zhang Lin, Zhang Hengguo, Deng Xinpei, Li Kailai, Zhang Jian, Jiang Aimin, Li Zhengrui, Luo Peng

机构信息

Donghai County People's Hospital (Affiliated Kangda College of Nanjing Medical University); Department of Oncology, Zhujiang Hospital, Southern Medical University, Lianyungang 222000, China.

Institute of Logic and Computation, Vienna University of Technology, Vienna, Austria.

出版信息

Brief Bioinform. 2025 Jul 2;26(4). doi: 10.1093/bib/bbaf357.

Abstract

Large language models (LLMs), representing a breakthrough advancement in artificial intelligence, have demonstrated substantial application value and development potential in bioinformatics research, particularly showing significant progress in the processing and analysis of complex biological data. This comprehensive review systematically examines the development and applications of LLMs in bioinformatics, with particular emphasis on their advancements in protein and nucleic acid structure prediction, omics analysis, drug design and screening, and biomedical literature mining. This work highlights the distinctive capabilities of LLMs in end-to-end learning and knowledge transfer paradigms. Additionally, this paper thoroughly discusses the major challenges confronting LLMs in current applications, including key issues such as model interpretability and data bias. Furthermore, this review comprehensively explores the potential of LLMs in cross-modal learning and interdisciplinary development. In conclusion, this paper aims to systematically summarize the current research status of LLMs in bioinformatics, objectively evaluate their advantages and limitations, and provide insights and recommendations for future research directions, thereby positioning LLMs as essential tools in bioinformatics research and fostering innovative developments in the biomedical field.

摘要

大语言模型(LLMs)代表了人工智能领域的一项突破性进展,已在生物信息学研究中展现出巨大的应用价值和发展潜力,尤其在复杂生物数据的处理和分析方面取得了显著进展。这篇综述系统地考察了大语言模型在生物信息学中的发展与应用,特别强调了它们在蛋白质和核酸结构预测、组学分析、药物设计与筛选以及生物医学文献挖掘等方面的进展。这项工作突出了大语言模型在端到端学习和知识转移范式中的独特能力。此外,本文深入讨论了大语言模型在当前应用中面临的主要挑战,包括模型可解释性和数据偏差等关键问题。此外,本综述全面探讨了大语言模型在跨模态学习和跨学科发展方面的潜力。总之,本文旨在系统总结大语言模型在生物信息学中的当前研究现状,客观评估其优势和局限性,并为未来研究方向提供见解和建议,从而将大语言模型定位为生物信息学研究的重要工具,并推动生物医学领域的创新发展。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验