文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

ChatGPT 让医学文献通俗易懂:简化放射学报告的探索性案例研究。

ChatGPT makes medicine easy to swallow: an exploratory case study on simplified radiology reports.

机构信息

Department of Radiology, LMU University Hospital, LMU Munich, Munich, Germany.

Comprehensive Pneumology Center (CPC-M), Member of the German Center for Lung Research (DZL), Munich, Germany.

出版信息

Eur Radiol. 2024 May;34(5):2817-2825. doi: 10.1007/s00330-023-10213-1. Epub 2023 Oct 5.


DOI:10.1007/s00330-023-10213-1
PMID:37794249
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11126432/
Abstract

OBJECTIVES: To assess the quality of simplified radiology reports generated with the large language model (LLM) ChatGPT and to discuss challenges and chances of ChatGPT-like LLMs for medical text simplification. METHODS: In this exploratory case study, a radiologist created three fictitious radiology reports which we simplified by prompting ChatGPT with "Explain this medical report to a child using simple language." In a questionnaire, we tasked 15 radiologists to rate the quality of the simplified radiology reports with respect to their factual correctness, completeness, and potential harm for patients. We used Likert scale analysis and inductive free-text categorization to assess the quality of the simplified reports. RESULTS: Most radiologists agreed that the simplified reports were factually correct, complete, and not potentially harmful to the patient. Nevertheless, instances of incorrect statements, missed relevant medical information, and potentially harmful passages were reported. CONCLUSION: While we see a need for further adaption to the medical field, the initial insights of this study indicate a tremendous potential in using LLMs like ChatGPT to improve patient-centered care in radiology and other medical domains. CLINICAL RELEVANCE STATEMENT: Patients have started to use ChatGPT to simplify and explain their medical reports, which is expected to affect patient-doctor interaction. This phenomenon raises several opportunities and challenges for clinical routine. KEY POINTS: • Patients have started to use ChatGPT to simplify their medical reports, but their quality was unknown. • In a questionnaire, most participating radiologists overall asserted good quality to radiology reports simplified with ChatGPT. However, they also highlighted a notable presence of errors, potentially leading patients to draw harmful conclusions. • Large language models such as ChatGPT have vast potential to enhance patient-centered care in radiology and other medical domains. To realize this potential while minimizing harm, they need supervision by medical experts and adaption to the medical field.

摘要

目的:评估大型语言模型(LLM)ChatGPT 生成的简化放射学报告的质量,并讨论 ChatGPT 类 LLM 用于医学文本简化的挑战和机遇。

方法:在这项探索性案例研究中,一名放射科医生创建了三个虚构的放射学报告,我们通过向 ChatGPT 提示“用简单的语言向孩子解释这份医学报告”来简化这些报告。在一份问卷中,我们要求 15 名放射科医生根据报告的事实准确性、完整性和对患者的潜在危害来评价简化后的放射学报告的质量。我们使用李克特量表分析和归纳自由文本分类来评估简化报告的质量。

结果:大多数放射科医生认为简化报告在事实、完整性和对患者的潜在危害方面是正确的。然而,也有报告错误陈述、遗漏相关医学信息和潜在有害段落的情况。

结论:尽管我们需要进一步适应医学领域,但这项研究的初步结果表明,使用 ChatGPT 等 LLM 来改善放射学和其他医学领域的以患者为中心的护理具有巨大的潜力。

临床相关性声明:患者已经开始使用 ChatGPT 来简化和解释他们的医疗报告,这预计将影响医患互动。这一现象为临床常规带来了若干机遇和挑战。

要点:

  1. 患者已经开始使用 ChatGPT 来简化他们的医疗报告,但报告的质量是未知的。
  2. 在一份问卷中,大多数参与的放射科医生总体上认为 ChatGPT 简化的放射学报告质量良好。然而,他们也强调了明显存在错误的情况,这可能导致患者得出有害的结论。
  3. ChatGPT 等大型语言模型在放射学和其他医学领域具有巨大的潜力,可以增强以患者为中心的护理。为了在最小化危害的同时实现这一潜力,它们需要医学专家的监督和适应医学领域。
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c201/11126432/f96171f6654b/330_2023_10213_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c201/11126432/1941594d0a8c/330_2023_10213_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c201/11126432/72d52bf89746/330_2023_10213_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c201/11126432/f96171f6654b/330_2023_10213_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c201/11126432/1941594d0a8c/330_2023_10213_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c201/11126432/72d52bf89746/330_2023_10213_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c201/11126432/f96171f6654b/330_2023_10213_Fig3_HTML.jpg

相似文献

[1]
ChatGPT makes medicine easy to swallow: an exploratory case study on simplified radiology reports.

Eur Radiol. 2024-5

[2]
Simplifying radiologic reports with natural language processing: a novel approach using ChatGPT in enhancing patient understanding of MRI results.

Arch Orthop Trauma Surg. 2024-2

[3]
Quantitative Evaluation of Large Language Models to Streamline Radiology Report Impressions: A Multimodal Retrospective Analysis.

Radiology. 2024-3

[4]
Generative Pre-trained Transformer 4 makes cardiovascular magnetic resonance reports easy to understand.

J Cardiovasc Magn Reson. 2024

[5]
ChatGPT and assistive AI in structured radiology reporting: A systematic review.

Curr Probl Diagn Radiol. 2024

[6]
Assessing ChatGPT's Proficiency in Simplifying Radiological Reports for Healthcare Professionals and Patients.

Cureus. 2023-12-21

[7]
Decoding radiology reports: Potential application of OpenAI ChatGPT to enhance patient understanding of diagnostic reports.

Clin Imaging. 2023-9

[8]
Translating musculoskeletal radiology reports into patient-friendly summaries using ChatGPT-4.

Skeletal Radiol. 2024-8

[9]
Accuracy of Information and References Using ChatGPT-3 for Retrieval of Clinical Radiological Information.

Can Assoc Radiol J. 2024-2

[10]
Transcending Language Barriers: Can ChatGPT Be the Key to Enhancing Multilingual Accessibility in Health Care?

J Am Coll Radiol. 2024-12

引用本文的文献

[1]
Assessing the ability of large language models to simplify lumbar spine imaging reports into patient-facing text: a pilot study of GPT-4.

Skeletal Radiol. 2025-9-9

[2]
ChatGPT's performance in sample size estimation: a preliminary study on the capabilities of artificial intelligence.

Fam Pract. 2025-8-14

[3]
Development, optimization, and preliminary evaluation of a novel artificial intelligence tool to promote patient health literacy in radiology reports: The Rads-Lit tool.

PLoS One. 2025-9-3

[4]
Do you Really Want to Know-Patient and Physician Attitudes of Physicians and English-Proficient Asian Patients toward Direct Release of Radiology Reports in Singapore.

J Imaging Inform Med. 2025-9-2

[5]
Application prospect of large language model represented by ChatGPT in ophthalmology.

Int J Ophthalmol. 2025-9-18

[6]
Supervised Learning and Large Language Model Benchmarks on Mental Health Datasets: Cognitive Distortions and Suicidal Risks in Chinese Social Media.

Bioengineering (Basel). 2025-8-19

[7]
Evaluating the Quality and Understandability of Radiology Report Summaries Generated by ChatGPT: Survey Study.

JMIR Form Res. 2025-8-27

[8]
GastroGPT: Development and controlled testing of a proof-of-concept customized clinical language model.

Endosc Int Open. 2025-8-6

[9]
Bosniak classification of renal cysts using large language models: a comparative study.

Radiologie (Heidelb). 2025-8-24

[10]
Evaluating a Chatbot as a Companion for Patients With Breast Cancer: Collaborative Pilot Study.

JMIR Cancer. 2025-8-13

本文引用的文献

[1]
Patient-centered Reporting in Radiology: A Single-site Survey Study of Lung Cancer Screening Results.

J Thorac Imaging. 2021-11-1

[2]
BioBERT: a pre-trained biomedical language representation model for biomedical text mining.

Bioinformatics. 2020-2-15

[3]
Readability of radiology reports: implications for patient-centered care.

Clin Imaging. 2019

[4]
Readability of Lumbar Spine MRI Reports: Will Patients Understand?

AJR Am J Roentgenol. 2019-1-8

[5]
PORTER: a Prototype System for Patient-Oriented Radiology Reporting.

J Digit Imaging. 2016-8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索