ACS Nano. 2024 Jul 2;18(26):16819-16831. doi: 10.1021/acsnano.4c02434. Epub 2024 Jun 18.
The rapid spread of SARS-CoV-2 caused the COVID-19 pandemic and accelerated vaccine development to prevent the spread of the virus and control the disease. Given the sustained high infectivity and evolution of SARS-CoV-2, there is an ongoing interest in developing COVID-19 serology tests to monitor population-level immunity. To address this critical need, we designed a paper-based multiplexed vertical flow assay (xVFA) using five structural proteins of SARS-CoV-2, detecting IgG and IgM antibodies to monitor changes in COVID-19 immunity levels. Our platform not only tracked longitudinal immunity levels but also categorized COVID-19 immunity into three groups: protected, unprotected, and infected, based on the levels of IgG and IgM antibodies. We operated two xVFAs in parallel to detect IgG and IgM antibodies using a total of 40 μL of human serum sample in <20 min per test. After the assay, images of the paper-based sensor panel were captured using a mobile phone-based custom-designed optical reader and then processed by a neural network-based serodiagnostic algorithm. The serodiagnostic algorithm was trained with 120 measurements/tests and 30 serum samples from 7 randomly selected individuals and was blindly tested with 31 serum samples from 8 different individuals, collected before vaccination as well as after vaccination or infection, achieving an accuracy of 89.5%. The competitive performance of the xVFA, along with its portability, cost-effectiveness, and rapid operation, makes it a promising computational point-of-care (POC) serology test for monitoring COVID-19 immunity, aiding in timely decisions on the administration of booster vaccines and general public health policies to protect vulnerable populations.
SARS-CoV-2 的快速传播导致了 COVID-19 大流行,并加速了疫苗的开发,以防止病毒传播和控制疾病。鉴于 SARS-CoV-2 的持续高传染性和不断进化,人们一直有兴趣开发 COVID-19 血清学检测方法来监测人群水平的免疫力。为了满足这一关键需求,我们设计了一种基于纸的多重垂直流动分析(xVFA),使用 SARS-CoV-2 的五种结构蛋白,检测 IgG 和 IgM 抗体,以监测 COVID-19 免疫力水平的变化。我们的平台不仅跟踪纵向免疫水平,还根据 IgG 和 IgM 抗体的水平将 COVID-19 免疫分为三组:保护、无保护和感染。我们平行操作两个 xVFA,使用总共 40 μL 的人血清样本,每个测试在<20 分钟内即可检测 IgG 和 IgM 抗体。在检测后,使用基于移动电话的定制光学读取器捕获基于纸的传感器面板的图像,然后使用基于神经网络的血清诊断算法对其进行处理。该血清诊断算法使用 120 次测量/测试和 7 名随机选择的个体的 30 个血清样本进行训练,并对 8 名不同个体的 31 个血清样本进行了盲测,在接种疫苗前后以及接种疫苗或感染后采集,准确率为 89.5%。xVFA 的竞争性能,以及其便携性、成本效益和快速操作,使其成为一种有前途的计算型即时护理(POC)血清学检测方法,用于监测 COVID-19 免疫力,有助于及时决定是否接种加强疫苗和制定一般公共卫生政策,以保护弱势群体。