Suppr超能文献

神经网络增强 3D 涡轮自旋回波磁共振颅内血管壁成像。

Neural network enhanced 3D turbo spin echo for MR intracranial vessel wall imaging.

机构信息

Philips Research North America, Cambridge, MA 02141, United States.

Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China.

出版信息

Magn Reson Imaging. 2021 May;78:7-17. doi: 10.1016/j.mri.2021.01.004. Epub 2021 Feb 4.

Abstract

PURPOSE

To improve the signal-to-noise ratio (SNR) and image sharpness for whole brain isotropic 0.5 mm three-dimensional (3D) T weighted (Tw) turbo spin echo (TSE) intracranial vessel wall imaging (IVWI) at 3 T.

METHODS

The variable flip angle (VFA) method enables useful optimization across scan efficiency, SNR and relaxation induced point spread function (PSF) for TSE imaging. A convolutional neural network (CNN) was developed to retrospectively enhance the acquired TSE image with PSF blurring. The previously developed VFA method to increase SNR at the expense of blur can be combined with the presented PSF correction to yield long echo train length (ETL) scan while the acquired image remains high SNR and sharp. The overall approach can enable an optimized solution for accelerated whole brain high-resolution 3D Tw TSE IVWI. Its performance was evaluated on healthy volunteers and patients.

RESULTS

The PSF blurred image acquired by a long ETL scan can be enhanced by CNN to restore similar sharpness as a short ETL scan, which outperforms the traditional linear PSF enhancement approach. For accelerated whole brain IVWI on volunteers, the optimized isotropic 0.5 mm 3D Tw TSE sequence with CNN based PSF enhancement provides sufficient flow suppression and improved image quality. Preliminary results on patients further demonstrated its improved delineation for intracranial vessel wall and plaque morphology.

CONCLUSION

The CNN enhanced VFA TSE imaging enables an overall image quality improvement for high-resolution 3D Tw IVWI, and may provide a better tradeoff across scan efficiency, SNR and PSF for 3D TSE acquisitions.

摘要

目的

提高 3T 下全脑各向同性 0.5mm 三维(3D)T 加权(Tw)涡轮自旋回波(TSE)颅内血管壁成像(IVWI)的信噪比(SNR)和图像锐利度。

方法

可变翻转角(VFA)方法可在扫描效率、SNR 和弛豫诱导的点扩散函数(PSF)之间对 TSE 成像进行有效优化。开发了卷积神经网络(CNN)来回顾性地增强具有 PSF 模糊的采集 TSE 图像。先前开发的以牺牲模糊为代价增加 SNR 的 VFA 方法可以与提出的 PSF 校正相结合,从而在获得的图像保持高 SNR 和锐利度的情况下实现长回波链长度(ETL)扫描。整体方法可以为加速全脑高分辨率 3D Tw TSE IVWI 提供优化解决方案。其性能在健康志愿者和患者中进行了评估。

结果

长 ETL 扫描采集的 PSF 模糊图像可以通过 CNN 增强来恢复与短 ETL 扫描相似的锐利度,这优于传统的线性 PSF 增强方法。对于志愿者的加速全脑 IVWI,基于 CNN 的 PSF 增强的优化各向同性 0.5mm 3D Tw TSE 序列提供了足够的流抑制和改善的图像质量。对患者的初步结果进一步证明了其对颅内血管壁和斑块形态的改善描绘。

结论

CNN 增强的 VFA TSE 成像可提高高分辨率 3D Tw IVWI 的整体图像质量,并可能为 3D TSE 采集提供扫描效率、SNR 和 PSF 之间更好的折衷。

相似文献

本文引用的文献

3
Intracranial Vessel Wall Segmentation Using Convolutional Neural Networks.基于卷积神经网络的颅内血管壁分割。
IEEE Trans Biomed Eng. 2019 Oct;66(10):2840-2847. doi: 10.1109/TBME.2019.2896972. Epub 2019 Feb 1.
6

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验