Suppr超能文献

一种基于前列腺周围脂肪组织放射组学特征的列线图,用于预测首次诊断的前列腺癌患者的骨转移。

A nomogram based on radiomic features from peri-prostatic adipose tissue for predicting bone metastasis in first-time diagnosed prostate cancer patients.

作者信息

Liu Bohao, Cai Qian, Zhao Xiao, Su Huabin, Lin Zhengxu, Wu Jialin, Li Xiaoyang, Zhu Weian, Zou Chen, Luo Yun

机构信息

Department of Urology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.

Department of Interventional Radiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.

出版信息

Adipocyte. 2025 Dec;14(1):2517583. doi: 10.1080/21623945.2025.2517583. Epub 2025 Jun 19.

Abstract

PURPOSE

To evaluate a radiomics-based nomogram using peri-prostatic adipose tissue (PPAT) features for predicting bone metastasis (BM) in newly diagnosed prostate cancer (PCa) patients.

METHODS

A retrospective study of 151 PCa patients (October 2010-November 2022) was conducted. Radiomic features were extracted from axial T2-weighted MRI of PPAT, and normalized PPAT was calculated as the ratio of PPAT volume to prostate volume. A radiomics score (Radscore) was developed using logistic regression with 16 features selected via LASSO regression. Independent predictors identified through univariate and multivariate logistic regression were used to construct a nomogram. Predictive performance was assessed using ROC curves, and internal validation involved 1000 bootstrapped iterations.

RESULTS

The Radscore, based on 16 features, showed significant association with BM and outperformed normalized PPAT in predictive value. Independent predictors of BM included Radscore, alkaline phosphatase (ALP), and clinical N stage (cN). A nomogram integrating these factors demonstrated strong discrimination (C-index: 0.908; 95% CI: 0.851-0.966) and calibration, with consistent results in validation (C-index: 0.903; 95% CI: 0.897-0.916). Decision curve analysis confirmed its clinical utility.

CONCLUSIONS

Radscore, cN, and ALP were identified as independent BM predictors. The developed nomogram enables accurate risk stratification and personalized BM predictions for newly diagnosed PCa patients.

摘要

目的

评估一种基于影像组学的列线图,该列线图使用前列腺周围脂肪组织(PPAT)特征来预测新诊断前列腺癌(PCa)患者的骨转移(BM)。

方法

对151例PCa患者(2010年10月至2022年11月)进行回顾性研究。从PPAT的轴位T2加权MRI中提取影像组学特征,并计算标准化PPAT,即PPAT体积与前列腺体积之比。使用逻辑回归开发影像组学评分(Radscore),通过LASSO回归选择16个特征。通过单因素和多因素逻辑回归确定的独立预测因子用于构建列线图。使用ROC曲线评估预测性能,内部验证涉及1000次自举迭代。

结果

基于16个特征的Radscore与BM显著相关,预测价值优于标准化PPAT。BM的独立预测因子包括Radscore、碱性磷酸酶(ALP)和临床N分期(cN)。整合这些因素的列线图显示出很强的辨别力(C指数:0.908;95%CI:0.851-0.966)和校准,验证结果一致(C指数:0.903;95%CI:0.897-0.916)。决策曲线分析证实了其临床实用性。

结论

Radscore、cN和ALP被确定为独立的BM预测因子。所开发的列线图能够为新诊断的PCa患者进行准确的风险分层和个性化的BM预测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c83f/12184149/5ad49ab4dc08/KADI_A_2517583_F0001_B.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验