Suppr超能文献

DeepSF-4mC:一种利用序列特征预测 DNA 胞嘧啶 4mC 甲基化位点的深度学习模型。

DeepSF-4mC: A deep learning model for predicting DNA cytosine 4mC methylation sites leveraging sequence features.

机构信息

Department of Nuclear Medicine, General Hospital of Northern Theater Command, Shenyang, Liaoning, 110016, China; College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, Liaoning, 110167, China.

College of Computer Science and Technology, Jilin University, Changchun, Jilin, 130012, China.

出版信息

Comput Biol Med. 2024 Mar;171:108166. doi: 10.1016/j.compbiomed.2024.108166. Epub 2024 Feb 16.

Abstract

N-methylcytosine (4mC) is a DNA modification involving the addition of a methyl group to the fourth nitrogen atom of the cytosine base. This modification may influence gene regulation, providing potential insights into gene control mechanisms. Traditional laboratory methods for detecting 4mC DNA methylation have limitations, but the rise of artificial intelligence has introduced efficient computational strategies for 4mC site prediction. Despite this progress, challenges persist in terms of model performance and interpretability. To tackle these challenges, we propose DeepSF-4mC, a deep learning model specifically designed for predicting DNA cytosine 4mC methylation sites by leveraging sequence features. Our approach incorporates multiple encoding techniques to enhance prediction accuracy, increase model stability, and reduce the computational resources needed. Leveraging transfer learning, we harness existing models to enhance performance through learned representations or fine-tuning. Ensemble learning techniques combine predictions from multiple models, boosting robustness and accuracy. This research contributes to DNA methylation analysis and lays the groundwork for understanding 4mC's multifaceted role in biological processes. The web server for DeepSF-4mC is accessible at: http://deepsf-4mc.top/and the original code can be found at: https://github.com/754131799/DeepSF-4mC.

摘要

N-甲基胞嘧啶(4mC)是一种 DNA 修饰,涉及在胞嘧啶碱基的第四个氮原子上添加一个甲基基团。这种修饰可能影响基因调控,为基因控制机制提供潜在的见解。检测 4mC DNA 甲基化的传统实验室方法存在局限性,但人工智能的兴起为 4mC 位点预测引入了高效的计算策略。尽管取得了这些进展,但在模型性能和可解释性方面仍存在挑战。为了应对这些挑战,我们提出了 DeepSF-4mC,这是一种专门用于通过利用序列特征预测 DNA 胞嘧啶 4mC 甲基化位点的深度学习模型。我们的方法采用了多种编码技术,以提高预测准确性、增加模型稳定性和减少所需的计算资源。我们利用迁移学习,通过学习表示或微调利用现有模型来提高性能。集成学习技术结合了来自多个模型的预测,提高了稳健性和准确性。这项研究为 DNA 甲基化分析做出了贡献,并为理解 4mC 在生物过程中的多方面作用奠定了基础。DeepSF-4mC 的网络服务器可在以下网址访问:http://deepsf-4mc.top/,原始代码可在以下网址找到:https://github.com/754131799/DeepSF-4mC。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验