Suppr超能文献

负载于非晶态碳纳米纤维骨架中的氧化锗纳米颗粒作为高可逆锂存储负极材料

GeO Nanoparticles Decorated in Amorphous Carbon Nanofiber Framework as Highly Reversible Lithium Storage Anode.

作者信息

Xie Wenhe, Liu Congcong, Hu Chen, Ma Yuanxiao, Li Xuefeng, Wang Qian, An Zhe, Liu Shenghong, Sun Haibin, Sun Xiaolei

机构信息

Key Laboratory of Microelectronics and Energy of Henan Province, Xinyang Normal University, Xinyang 464000, China.

School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, Nankai University, Tianjin 300350, China.

出版信息

Molecules. 2023 Sep 21;28(18):6730. doi: 10.3390/molecules28186730.

Abstract

Germanium oxide (GeO) is a high theoretical capacity electrode material due to its alloying and conversion reaction. However, the actual cycling capacity is rather poor on account of suffering low electron/ion conductivity, enormous volume change and agglomeration in the repeated lithiation/delithiation process, which renders quite a low reversible electrochemical lithium storage reaction. In this work, highly amorphous GeO particles are uniformly distributed in the carbon nanofiber framework, and the amorphous carbon nanofiber not only improves the conduction and buffers the volume changes but also prevents active material agglomeration. As a result, the present GeO and carbon composite electrode exhibits highly reversible alloying and conversion processes during the whole cycling process. The two reversible electrochemical reactions are verified by differential capacity curves and cyclic voltammetry measurements during the whole cycling process. The corresponding reversible capacity is 747 mAh g after 300 cycles at a current density of 0.3 A g. The related reversible capacities are 933, 672, 487 and 302 mAh g at current densities of 0.2, 0.4, 0.8 and 1.6 A g, respectively. The simple strategy for the design of amorphous GeO/carbon composites enables potential application for high-performance LIBs.

摘要

由于其合金化和转化反应,氧化锗(GeO)是一种具有高理论容量的电极材料。然而,由于在反复的锂化/脱锂过程中电子/离子传导率低、体积变化大以及团聚现象,其实际循环容量相当差,这导致可逆电化学锂存储反应相当低。在这项工作中,高度非晶态的GeO颗粒均匀分布在碳纳米纤维框架中,非晶态碳纳米纤维不仅提高了导电性并缓冲了体积变化,还防止了活性材料团聚。结果,目前的GeO和碳复合电极在整个循环过程中表现出高度可逆的合金化和转化过程。通过整个循环过程中的微分容量曲线和循环伏安法测量验证了这两个可逆电化学反应。在0.3 A g的电流密度下循环300次后,相应的可逆容量为747 mAh g。在0.2、0.4、0.8和1.6 A g的电流密度下,相关的可逆容量分别为933、672、487和302 mAh g。非晶态GeO/碳复合材料的简单设计策略使其在高性能锂离子电池中具有潜在应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6749/10538114/2ebe017fae75/molecules-28-06730-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验