Suppr超能文献

嵌入式机器学习系统用于检测肩关节离断患者的肌肉模式。

Embedded Machine Learning System for Muscle Patterns Detection in a Patient with Shoulder Disarticulation.

机构信息

Departamento de Electromecánica, Universidad Autónoma de Guadalajara, Guadalajara 45129, Mexico.

Departamento de Ciencias Computacionales, Dirección de Posgrados, Campus Internacional, Universidad Autónoma de Guadalajara, Guadalajara 45129, Mexico.

出版信息

Sensors (Basel). 2024 May 21;24(11):3264. doi: 10.3390/s24113264.

Abstract

The integration of artificial intelligence (AI) models in the classification of electromyographic (EMG) signals represents a significant advancement in the design of control systems for prostheses. This study explores the development of a portable system that classifies the electrical activity of three shoulder muscles in real time for actuator control, marking a milestone in the autonomy of prosthetic devices. Utilizing low-power microcontrollers, the system ensures continuous EMG signal recording, enhancing user mobility. Focusing on a case study-a 42-year-old man with left shoulder disarticulation-EMG activity was recorded over two days using a specifically designed electronic board. Data processing was performed using the Edge Impulse platform, renowned for its effectiveness in implementing AI on edge devices. The first day was dedicated to a training session with 150 repetitions spread across 30 trials and three different movements. Based on these data, the second day tested the AI model's ability to classify EMG signals in new movement executions in real time. The results demonstrate the potential of portable AI-based systems for prosthetic control, offering accurate and swift EMG signal classification that enhances prosthetic user functionality and experience. This study not only underscores the feasibility of real-time EMG signal classification but also paves the way for future research on practical applications and improvements in the quality of life for prosthetic users.

摘要

人工智能 (AI) 模型在肌电图 (EMG) 信号分类中的集成代表了假肢控制系统设计的重大进展。本研究探索了一种便携式系统的开发,该系统能够实时分类三个肩部肌肉的电活动,为假肢设备的自主性迈出了重要一步。该系统利用低功耗微控制器,确保连续记录 EMG 信号,提高用户的移动性。本研究聚焦于一个案例研究——一位 42 岁的左肩离断患者,使用专门设计的电子板记录了两天的 EMG 活动。数据处理使用了 Edge Impulse 平台,该平台以在边缘设备上实施 AI 的有效性而闻名。第一天进行了 150 次重复、30 次试验和三种不同运动的训练。基于这些数据,第二天测试了 AI 模型在实时新运动执行中分类 EMG 信号的能力。结果表明,基于 AI 的便携式系统在假肢控制方面具有潜力,能够实现准确、快速的 EMG 信号分类,增强假肢用户的功能和体验。本研究不仅强调了实时 EMG 信号分类的可行性,还为未来关于实际应用和提高假肢用户生活质量的研究铺平了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/efd8/11174928/fc58367fdf49/sensors-24-03264-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验