Suppr超能文献

低成本、无线、3D 打印定制臂带用于表面肌电手势识别。

A Low-Cost, Wireless, 3-D-Printed Custom Armband for sEMG Hand Gesture Recognition.

机构信息

Department of Computer and Electrical Engineering, Université Laval, 1065 Avenue de la Médecine, Quebec, QC G1V 0A6, Canada.

Department of Computer Science and Software Engineering, Université Laval, 1065 Avenue de la Médecine, Quebec, QC G1V 0A6, Canada.

出版信息

Sensors (Basel). 2019 Jun 24;19(12):2811. doi: 10.3390/s19122811.

Abstract

Wearable technology can be employed to elevate the abilities of humans to perform demanding and complex tasks more efficiently. Armbands capable of surface electromyography (sEMG) are attractive and noninvasive devices from which human intent can be derived by leveraging machine learning. However, the sEMG acquisition systems currently available tend to be prohibitively costly for personal use or sacrifice wearability or signal quality to be more affordable. This work introduces the 3DC Armband designed by the in Laval University; a wireless, 10-channel, 1000 sps, dry-electrode, low-cost (∼150 USD) myoelectric armband that also includes a 9-axis inertial measurement unit. The proposed system is compared with the Myo Armband by Thalmic Labs, one of the most popular sEMG acquisition systems. The comparison is made by employing a new offline dataset featuring 22 able-bodied participants performing eleven hand/wrist gestures while wearing the two armbands simultaneously. The 3DC Armband systematically and significantly ( p < 0.05 ) outperforms the Myo Armband, with three different classifiers employing three different input modalities when using ten seconds or more of training data per gesture. This new dataset, alongside the source code, Altium project and 3-D models are made readily available for download within a Github repository.

摘要

可穿戴技术可用于提高人类执行要求高、复杂任务的能力,使其更加高效。基于表面肌电(sEMG)的臂带是一种吸引人的非侵入式设备,可通过机器学习来推断人类意图。然而,目前可用的 sEMG 采集系统往往价格昂贵,不适合个人使用,或者为了降低成本而牺牲了佩戴舒适性或信号质量。本研究介绍了由拉瓦尔大学的 设计的 3DC 臂带;这是一种无线、10 通道、1000 sps、干电极、低成本(约 150 美元)的肌电臂带,还包括一个 9 轴惯性测量单元。该系统与 Thalmic Labs 公司的 Myo 臂带进行了比较,后者是最受欢迎的 sEMG 采集系统之一。通过同时佩戴两个臂带来执行 11 个手/腕手势,使用 22 名健康参与者的新离线数据集来进行比较。3DC 臂带系统地、显著地(p<0.05)优于 Myo 臂带,三个不同的分类器在每个手势使用 10 秒或更长的训练数据时采用三种不同的输入模式。这个新数据集,以及代码、Altium 项目和 3D 模型都可以在 Github 存储库中轻松下载。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab89/6631507/c85311d6cbe8/sensors-19-02811-g0A1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验