Suppr超能文献

采用双分支卷积胶囊神经网络进行滚动轴承的故障诊断。

The Fault Diagnosis of Rolling Bearings Is Conducted by Employing a Dual-Branch Convolutional Capsule Neural Network.

作者信息

Lu Wanjie, Liu Jieyu, Lin Fanhao

机构信息

School of Mechanical Engineering, Liaoning Technical University, Fuxin 123000, China.

出版信息

Sensors (Basel). 2024 May 24;24(11):3384. doi: 10.3390/s24113384.

Abstract

Currently, many fault diagnosis methods for rolling bearings based on deep learning are facing two main challenges. Firstly, the deep learning model exhibits poor diagnostic performance and limited generalization ability in the presence of noise signals and varying loads. Secondly, there is incomplete utilization of fault information and inadequate extraction of fault features, leading to the low diagnostic accuracy of the model. To address these problems, this paper proposes an improved dual-branch convolutional capsule neural network for rolling bearing fault diagnosis. This method converts the collected bearing vibration signals into grayscale images to construct a grayscale image dataset. By fully considering the types of bearing faults and damage diameters, the data are labeled using a dual-label format. A multi-scale convolution module is introduced to extract features from the data and maximize feature information extraction. Additionally, a coordinate attention mechanism is incorporated into this module to better extract useful channel features and enhance feature extraction capability. Based on adaptive fusion between fault type (damage diameter) features and labels, a dual-branch convolutional capsule neural network model for rolling bearing fault diagnosis is established. The model was experimentally validated using both Case Western Reserve University's bearing dataset and self-made datasets. The experimental results demonstrate that the fault type branch of the model achieves an accuracy rate of 99.88%, while the damage diameter branch attains an accuracy rate of 99.72%. Both branches exhibit excellent classification performance and display robustness against noise interference and variable working conditions. In comparison with other algorithm models cited in the reference literature, the diagnostic capability of the model proposed in this study surpasses them. Furthermore, the generalization ability of the model is validated using a self-constructed laboratory dataset, yielding an average accuracy rate of 94.25% for both branches.

摘要

目前,许多基于深度学习的滚动轴承故障诊断方法面临两个主要挑战。首先,深度学习模型在存在噪声信号和变化负载的情况下,诊断性能较差且泛化能力有限。其次,故障信息利用不充分,故障特征提取不足,导致模型诊断准确率较低。为了解决这些问题,本文提出了一种用于滚动轴承故障诊断的改进型双分支卷积胶囊神经网络。该方法将采集到的轴承振动信号转换为灰度图像,构建灰度图像数据集。通过充分考虑轴承故障类型和损伤直径,采用双标签格式对数据进行标注。引入多尺度卷积模块从数据中提取特征,最大化特征信息提取。此外,在该模块中引入坐标注意力机制,以更好地提取有用的通道特征,增强特征提取能力。基于故障类型(损伤直径)特征与标签之间的自适应融合,建立了滚动轴承故障诊断的双分支卷积胶囊神经网络模型。使用凯斯西储大学的轴承数据集和自制数据集对该模型进行了实验验证。实验结果表明,该模型的故障类型分支准确率达到99.88%,损伤直径分支准确率达到99.72%。两个分支均表现出优异的分类性能,并且对噪声干扰和可变工作条件具有鲁棒性。与参考文献中引用的其他算法模型相比,本研究提出的模型诊断能力超过它们。此外,使用自建的实验室数据集验证了该模型的泛化能力,两个分支的平均准确率为94.25%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9215/11174743/62ef2497d58e/sensors-24-03384-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验