Fodor Milán András, Herschel Hannah, Cantürk Atilla, Heisenberg Gernot, Volosyak Ivan
Faculty of Technology and Bionics, Rhine-Waal University of Applied Sciences, 47533 Kleve, Germany.
Institute of Information Science, Technical University of Applied Sciences Cologne, 50678 Cologne, Germany.
Brain Sci. 2024 Aug 22;14(8):846. doi: 10.3390/brainsci14080846.
Brain-computer interfaces (BCIs) enable direct communication between the brain and external devices using electroencephalography (EEG) signals. BCIs based on code-modulated visual evoked potentials (cVEPs) are based on visual stimuli, thus appropriate visual feedback on the interface is crucial for an effective BCI system. Many previous studies have demonstrated that implementing visual feedback can improve information transfer rate (ITR) and reduce fatigue. This research compares a dynamic interface, where target boxes change their sizes based on detection certainty, with a threshold bar interface in a three-step cVEP speller. In this study, we found that both interfaces perform well, with slight variations in accuracy, ITR, and output characters per minute (OCM). Notably, some participants showed significant performance improvements with the dynamic interface and found it less distracting compared to the threshold bars. These results suggest that while average performance metrics are similar, the dynamic interface can provide significant benefits for certain users. This study underscores the potential for personalized interface choices to enhance BCI user experience and performance. By improving user friendliness, performance, and reducing distraction, dynamic visual feedback could optimize BCI technology for a broader range of users.
脑机接口(BCIs)能够利用脑电图(EEG)信号实现大脑与外部设备之间的直接通信。基于代码调制视觉诱发电位(cVEPs)的脑机接口基于视觉刺激,因此界面上适当的视觉反馈对于有效的脑机接口系统至关重要。许多先前的研究表明,实施视觉反馈可以提高信息传输率(ITR)并减轻疲劳。本研究在一个三步cVEP拼写器中,将目标框根据检测确定性改变大小的动态界面与阈值条界面进行了比较。在本研究中,我们发现两个界面的表现都很好,在准确性、信息传输率和每分钟输出字符数(OCM)方面略有差异。值得注意的是,一些参与者使用动态界面时表现有显著改善,并且发现与阈值条相比,它的干扰性更小。这些结果表明,虽然平均性能指标相似,但动态界面可以为某些用户带来显著益处。本研究强调了个性化界面选择对于增强脑机接口用户体验和性能的潜力。通过提高用户友好性、性能并减少干扰,动态视觉反馈可以为更广泛的用户优化脑机接口技术。