Chen Tzu-Yu, Chen Jinfeng, Ruszczycky Mark W, Hilovsky Dalton, Hostetler Tyler, Liu Xiaojing, Zhou Jiahai, Chang Wei-Chen
Department of Chemistry, North Carolina State University, Raleigh, NC 27695, United States.
State Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China.
ACS Catal. 2024 Apr 5;14(7):4975-4983. doi: 10.1021/acscatal.4c00645. Epub 2024 Mar 19.
A number of bacteria are known to produce isonitrile-containing peptides (INPs) that facilitate metal transport and are important for cell survival; however, considerable structural variation is observed among INPs depending on the producing organism. While non-heme iron 2-oxoglutarate dependent isonitrilases catalyze isonitrile formation, how the natural variation in INP structure is controlled and its implications for INP bioactivity remain open questions. Herein, total chemical synthesis is utilized with X-Ray crystallographic analysis of mycobacterial isonitrilases to provide a structural model of substrate specificity that explains the longer alkyl chains observed in mycobacterial versus Streptomyces INPs. Moreover, proton NMR titration experiments demonstrate that INPs regardless of alkyl chain length are specific for binding copper instead of zinc. These results suggest that isonitrilases may act as gatekeepers in modulating the observed biological distribution of INP structures and this distribution may be primarily related to differing metal transport requirements among the producing strains.
已知许多细菌会产生含异腈的肽(INP),这些肽有助于金属运输且对细胞存活很重要;然而,根据产生这些肽的生物体不同,INP之间存在相当大的结构差异。虽然非血红素铁依赖2-氧代戊二酸的异腈酶催化异腈的形成,但INP结构的自然变异是如何被控制的以及其对INP生物活性的影响仍然是悬而未决的问题。在此,通过对分枝杆菌异腈酶进行X射线晶体学分析并结合全化学合成,提供了一个底物特异性的结构模型,该模型解释了在分枝杆菌与链霉菌的INP中观察到的较长烷基链。此外,质子核磁共振滴定实验表明,无论烷基链长度如何,INP都特异性结合铜而非锌。这些结果表明,异腈酶可能在调节观察到的INP结构的生物学分布中起把关作用,并且这种分布可能主要与产生菌株之间不同的金属运输需求有关。