Basciu Andrea, Athar Mohd, Kurt Han, Neville Christine, Malloci Giuliano, Muredda Fabrizio C, Bosin Andrea, Ruggerone Paolo, Bonvin Alexandre M J J, Vargiu Attilio V
Physics Department, University of Cagliari, Cittadella Universitaria, I-09042 Monserrato (CA), Italy.
Institute for Computational Molecular Science, Temple University, 1925 N. 12th Street Philadelphia, PA 19122, U.S.A.
bioRxiv. 2024 Nov 10:2024.06.02.597018. doi: 10.1101/2024.06.02.597018.
Knowledge of the structures formed by proteins and small molecules is key to understand the molecular principles of chemotherapy and for designing new and more effective drugs. During the early stage of a drug discovery program, it is customary to predict ligand-protein complexes , particularly when screening large compound databases. While virtual screening based on molecular docking is widely used for this purpose, it generally fails in mimicking binding events associated with large conformational changes in the protein, particularly when the latter involve multiple domains. In this work, we describe a new methodology to generate bound-like conformations of very flexible and allosteric proteins bearing multiple binding sites by exploiting only information on the unbound structure and the putative binding sites. The protocol is validated on the paradigm enzyme adenylate kinase, for which we generated a significant fraction of bound-like structures. A fraction of these conformations, employed in ensemble-docking calculations, allowed to find native-like poses of substrates and inhibitors (binding to the active form of the enzyme), as well as catalytically incompetent analogs (binding the inactive form). Our protocol provides a general framework for the generation of bound-like conformations of challenging drug targets that are suitable to host different ligands, demonstrating high sensitivity to the fine chemical details that regulate protein's activity. We foresee applications in virtual screening, in the prediction of the impact of amino acid mutations on structure and dynamics, and in protein engineering.
了解蛋白质和小分子形成的结构是理解化疗分子原理以及设计新型更有效药物的关键。在药物研发项目的早期阶段,预测配体 - 蛋白质复合物是常见做法,尤其是在筛选大型化合物数据库时。虽然基于分子对接的虚拟筛选广泛用于此目的,但它通常无法模拟与蛋白质中大幅构象变化相关的结合事件,特别是当后者涉及多个结构域时。在这项工作中,我们描述了一种新方法,通过仅利用未结合结构和假定结合位点的信息,生成具有多个结合位点的非常灵活的变构蛋白的类似结合构象。该方案在典型酶腺苷酸激酶上得到验证,我们为其生成了相当一部分类似结合的结构。这些构象中的一部分用于整体对接计算,能够找到底物和抑制剂的类似天然构象(与酶的活性形式结合)以及催化无活性类似物(与无活性形式结合)。我们的方案为生成适合容纳不同配体的具有挑战性的药物靶点的类似结合构象提供了一个通用框架,对调节蛋白质活性的精细化学细节表现出高度敏感性。我们预计该方法可应用于虚拟筛选、预测氨基酸突变对结构和动力学的影响以及蛋白质工程。