Suppr超能文献

能够有效处理动态感觉特征的脉冲神经网络解释了体感皮层中受体信息的混合。

Spiking networks that efficiently process dynamic sensory features explain receptor information mixing in somatosensory cortex.

作者信息

Koren Veronika, Emanuel Alan J, Panzeri Stefano

机构信息

Institute of Neural Information Processing, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), 20251 Hamburg, Germany.

Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA.

出版信息

bioRxiv. 2024 Jun 8:2024.06.07.597979. doi: 10.1101/2024.06.07.597979.

Abstract

How do biological neural systems efficiently encode, transform and propagate information between the sensory periphery and the sensory cortex about sensory features evolving at different time scales? Are these computations efficient in normative information processing terms? While previous work has suggested that biologically plausible models of of such neural information processing may be implemented efficiently within a single processing layer, how such computations extend across several processing layers is less clear. Here, we model propagation of multiple time-varying sensory features across a sensory pathway, by extending the theory of efficient coding with spikes to efficient encoding, transformation and transmission of sensory signals. These computations are optimally realized by a multilayer spiking network with feedforward networks of spiking neurons (receptor layer) and recurrent excitatory-inhibitory networks of generalized leaky integrate-and-fire neurons (recurrent layers). Our model efficiently realizes a broad class of feature transformations, including positive and negative interaction across features, through specific and biologically plausible structures of feedforward connectivity. We find that mixing of sensory features in the activity of single neurons is beneficial because it lowers the metabolic cost at the network level. We apply the model to the somatosensory pathway by constraining it with parameters measured empirically and include in its last node, analogous to the primary somatosensory cortex (S1), two types of inhibitory neurons: parvalbumin-positive neurons realizing lateral inhibition, and somatostatin-positive neurons realizing winner-take-all inhibition. By implementing a negative interaction across stimulus features, this model captures several intriguing empirical observations from the somatosensory system of the mouse, including a decrease of sustained responses from subcortical networks to S1, a non-linear effect of the knock-out of receptor neuron types on the activity in S1, and amplification of weak signals from sensory neurons across the pathway.

摘要

生物神经系统如何在感觉外周和感觉皮层之间有效地编码、转换和传播关于在不同时间尺度上演变的感觉特征的信息?从规范信息处理的角度来看,这些计算是否高效?虽然先前的工作表明,这种神经信息处理的生物学上合理的模型可能在单个处理层内有效地实现,但这种计算如何扩展到多个处理层尚不清楚。在这里,我们通过将带尖峰的高效编码理论扩展到感觉信号的高效编码、转换和传输,对跨感觉通路的多个时变感觉特征的传播进行建模。这些计算通过一个多层脉冲网络来最优地实现,该网络由脉冲神经元的前馈网络(受体层)和广义泄漏积分发放神经元的递归兴奋性-抑制性网络(递归层)组成。我们的模型通过前馈连接的特定且生物学上合理的结构,有效地实现了广泛的特征转换,包括特征之间的正相互作用和负相互作用。我们发现,单个神经元活动中感觉特征的混合是有益的,因为它降低了网络层面的代谢成本。我们通过用经验测量的参数对模型进行约束,将其应用于体感通路,并在其最后一个节点(类似于初级体感皮层(S1))中纳入两种抑制性神经元:实现侧向抑制的小白蛋白阳性神经元和实现胜者全得抑制的生长抑素阳性神经元。通过在刺激特征之间实现负相互作用,该模型捕捉了来自小鼠体感系统的几个有趣的实证观察结果,包括从皮层下网络到S1的持续反应的减少、受体神经元类型敲除对S1活动的非线性影响,以及整个通路中感觉神经元弱信号的放大。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c63e/11185787/5cddf3a2c050/nihpp-2024.06.07.597979v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验