Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Canada.
Bull Math Biol. 2024 Jun 19;86(8):93. doi: 10.1007/s11538-024-01322-z.
Virotherapy treatment is a new and promising target therapy that selectively attacks cancer cells without harming normal cells. Mathematical models of oncolytic viruses have shown predator-prey like oscillatory patterns as result of an underlying Hopf bifurcation. In a spatial context, these oscillations can lead to different spatio-temporal phenomena such as hollow-ring patterns, target patterns, and dispersed patterns. In this paper we continue the systematic analysis of these spatial oscillations and discuss their relevance in the clinical context. We consider a bifurcation analysis of a spatially explicit reaction-diffusion model to find the above mentioned spatio-temporal virus infection patterns. The desired pattern for tumor eradication is the hollow ring pattern and we find exact conditions for its occurrence. Moreover, we derive the minimal speed of travelling invasion waves for the cancer and for the oncolytic virus. Our numerical simulations in 2-D reveal complex spatial interactions of the virus infection and a new phenomenon of a periodic peak splitting. An effect that we cannot explain with our current methods.
病毒疗法是一种新的、有前途的靶向治疗方法,它可以选择性地攻击癌细胞而不伤害正常细胞。溶瘤病毒的数学模型显示出类似于捕食者-猎物的振荡模式,这是由于潜在的 Hopf 分岔引起的。在空间背景下,这些振荡可以导致不同的时空现象,如空心环模式、目标模式和分散模式。在本文中,我们继续对这些空间振荡进行系统分析,并讨论它们在临床背景下的相关性。我们考虑了一个空间显式反应扩散模型的分岔分析,以找到上述时空病毒感染模式。肿瘤消除的理想模式是空心环模式,我们找到了其发生的确切条件。此外,我们还推导出了癌症和溶瘤病毒的侵袭波最小传播速度。我们在 2-D 中的数值模拟揭示了病毒感染的复杂空间相互作用,以及一个新的周期性峰分裂现象。这是一种我们无法用现有方法解释的现象。