Suppr超能文献

模式形成作为癌症免疫治疗中的一种适应性机制。

Pattern Formation as a Resilience Mechanism in Cancer Immunotherapy.

作者信息

Brennan Molly, Krause Andrew L, Villar-Sepúlveda Edgardo, Prior Christopher B

机构信息

Department of Mathematics, University College London, 25 Gordon Street, London, WC1H 0AY, United Kingdom.

Mathematical Sciences Department, Durham University, Upper Mountjoy Campus, Stockton Rd, Durham, DH1 3LE, United Kingdom.

出版信息

Bull Math Biol. 2025 Jul 1;87(8):106. doi: 10.1007/s11538-025-01485-3.

Abstract

Mathematical and computational modelling in oncology has played an increasingly important role in not only understanding the impact of various approaches to treatment on tumour growth, but in optimizing dosing regimens and aiding the development of treatment strategies. However, as with all modelling, only an approximation is made in the description of the biological and physical system. Here we show that tissue-scale spatial structure can have a profound impact on the resilience of tumours to immunotherapy using a classical model incorporating IL-2 compounds and effector cells as treatment parameters. Using linear stability analysis, numerical continuation, and direct simulations, we show that diffusing cancer cell populations can undergo pattern-forming (Turing) instabilities, leading to spatially-structured states that persist far into treatment regimes where the corresponding spatially homogeneous systems would uniformly predict a cancer-free state. These spatially-patterned states persist in a wide range of parameters, as well as under time-dependent treatment regimes. Incorporating treatment via domain boundaries can increase this resistance to treatment in the interior of the domain, further highlighting the importance of spatial modelling when designing treatment protocols informed by mathematical models. Counter-intuitively, this mechanism shows that increased effector cell mobility can increase the resilience of tumours to treatment. We conclude by discussing practical and theoretical considerations for understanding this kind of spatial resilience in other models of cancer treatment, in particular those incorporating more realistic spatial transport. This paper belongs to the special collection: Problems, Progress and Perspectives in Mathematical and Computational Biology.

摘要

肿瘤学中的数学和计算建模不仅在理解各种治疗方法对肿瘤生长的影响方面发挥着越来越重要的作用,而且在优化给药方案和辅助治疗策略的制定方面也发挥着重要作用。然而,与所有建模一样,在对生物和物理系统的描述中只能进行近似。在这里,我们使用一个将白细胞介素 - 2化合物和效应细胞作为治疗参数的经典模型表明,组织尺度的空间结构对肿瘤对免疫疗法的抵抗力有深远影响。通过线性稳定性分析、数值延拓和直接模拟,我们表明扩散的癌细胞群体可以经历模式形成(图灵)不稳定性,导致形成空间结构状态,这种状态在相应的空间均匀系统会一致预测无癌状态的治疗阶段中仍能持续存在。这些空间模式状态在广泛的参数范围内以及在随时间变化的治疗方案下都能持续存在。通过域边界纳入治疗可以增加域内部对治疗的抵抗力,这进一步突出了在设计基于数学模型的治疗方案时空间建模的重要性。与直觉相反,这种机制表明效应细胞迁移率的增加会增强肿瘤对治疗的抵抗力。我们通过讨论在理解其他癌症治疗模型中这种空间抵抗力方面的实际和理论考虑来得出结论,特别是那些纳入更现实空间传输的模型。本文属于特别专辑:数学与计算生物学中的问题、进展与展望。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e389/12214011/3582af2a5d9c/11538_2025_1485_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验