Choi Kyoungjun, Droudian Amirhossein, Wyss Roman M, Schlichting Karl-Philipp, Park Hyung Gyu
Nanoscience for Energy Technology and Sustainability, Department of Mechanical and Process Engineering, Eidgenössische Technische Hochschule (ETH) Zürich, Tannenstrasse 3, Zürich CH-8092, Switzerland.
Institute of Fluid Dynamics, Department of Mechanical and Process Engineering, Eidgenössische Technische Hochschule (ETH) Zürich, Sonneggstrasse 3, Zürich CH-8092, Switzerland.
Sci Adv. 2018 Nov 23;4(11):eaau0476. doi: 10.1126/sciadv.aau0476. eCollection 2018 Nov.
Reliable and large-scale manufacturing routes for perforated graphene membranes in separation and filtration remain challenging. We introduce two manufacturing pathways for the fabrication of highly porous, perforated graphene membranes with sub-100-nm pores, suitable for ultrafiltration and as a two-dimensional (2D) scaffold for synthesizing ultrathin, gas-selective polymers. The two complementary processes-bottom up and top down-enable perforated graphene membranes with desired layer number and allow ultrafiltration applications with liquid permeances up to 5.55 × 10 m s Pa m. Moreover, thin-film polymers fabricated via vapor-liquid interfacial polymerization on these perforated graphene membranes constitute gas-selective polyimide graphene membranes as thin as 20 nm with superior permeances. The methods of controlled, simple, and reliable graphene perforation on wafer scale along with vapor-liquid polymerization allow the expansion of current 2D membrane technology to high-performance ultrafiltration and 2D material reinforced, gas-selective thin-film polymers.
用于分离和过滤的多孔石墨烯膜的可靠且大规模制造路线仍然具有挑战性。我们介绍了两种制造途径,用于制备具有亚100纳米孔径的高度多孔、穿孔石墨烯膜,适用于超滤,并作为合成超薄气体选择性聚合物的二维(2D)支架。这两种互补的工艺——自下而上和自上而下——能够制备出具有所需层数的穿孔石墨烯膜,并实现高达5.55×10 m s Pa m的液体渗透率的超滤应用。此外,通过在这些穿孔石墨烯膜上进行气液界面聚合制备的薄膜聚合物构成了厚度仅为20纳米且具有优异渗透率的气体选择性聚酰亚胺石墨烯膜。在晶圆规模上进行可控、简单且可靠的石墨烯穿孔方法以及气液聚合,使得当前的二维膜技术能够扩展到高性能超滤和二维材料增强的气体选择性薄膜聚合物。